Rút gọn A=\(\dfrac{7^{48}\cdot5^{30}\cdot2^8-5^{30}\cdot7^{49}\cdot2^{10}}{5^{29}\cdot2^8\cdot7^{48}}\)
a) Chứng minh 2010100+201099 chia hết cho 2011
b) Rút gọn biểu thức - \(\dfrac{4^6\cdot9^5+6^9\cdot120}{8^4\cdot3^{12}-6^{11}}\)
- \(\dfrac{4^2\cdot25^2+32\cdot125}{2^3\cdot5^2}\)
c) So sánh các lũy thừa
- 321 và 231
- 2300 và 3200
- 329 và 1813
d) Tìm số tự nhiên n biết: - \(\dfrac{1}{9}\cdot3^4\cdot3^{n+1}=9^4\)
- \(\dfrac{1}{2}\cdot2^n+4\cdot2^n=9\cdot2^5\)
e) Chứng minh A và B là hai số tự nhiên liên tiếp
A=20+21+22+23+...+22011
Tìm x biết: \(\left(\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{8\cdot9\cdot10}\right)\cdot x=\frac{22}{45}\).
Có công thức cho mình thì càng tốt!
Tính: B= \(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)
\(\dfrac{1}{1\cdot2}\)+\(\dfrac{1}{2\cdot3}\)+\(\dfrac{1}{3\cdot4}\)+\(\dfrac{1}{4\cdot5}\)+\(\dfrac{1}{5\cdot6}\)
Chứng minh rằng khi chia 1 số nguyên tố cho 30 thì được số dư là 1 hoặc là 1 số nguyên tố
Chứng minh rằng:
\(\dfrac{3}{1^2\cdot2^2}+\dfrac{5}{2^2\cdot3^2}+...........+\dfrac{19}{9^2\cdot10^2}< 1\)
Tìm số dư của phép chia: \(E=2^{70}+15^{71}\) khi chia cho 7
1. a) Thực hiện phép tính:
\(A=\dfrac{2^{12}\cdot3^5-4^6\cdot9^2}{\left(2^2\cdot3\right)^6+8^4\cdot3^5}-\dfrac{5^{10}\cdot7^3-25^5\cdot49^2}{\left(125\cdot7\right)^3+5^9\cdot14^3}\)
b) Chứng minh rằng với mọi số nguyên dương n thì 3n + 2 - 2n + 2 + 3n - 2n chia hết cho 10.