Có:\(x_1+x_2=\dfrac{-b}{a}=m\) ;\(x_1x_2=\dfrac{c}{a}=m-1\)
Vì y1=x12;y2=x22 nên ta có:
\(y_1+y_2=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=m^2-2\left(m-1\right)^2\)
\(=m^2-2\left(m^2-2m+1\right)=-m^2+4m-2\)
\(y_1y_2=x_1^2x_2^2=\left(m-1\right)^2\)
Xét pt : a2y2+b2y+c2=0
Có: \(\dfrac{-b_2}{a_2}=-m^2+4m-2;\dfrac{c_2}{a_2}=m^2-2m+1\)
Chọn a2=1, khi đó ta có pt bậc 2 ẩn y:
\(y^2+\left(m^2-4m+2\right)y+m^2-2m+1=0\)