a, Câu này dễ quá bỏ qua nha :)
b, Ta có : \(\Delta^,=b^{,2}-ac=\left(-2\right)^2-\left(m+1\right)=4-m-1=3-m\)
- Để phương trình có 2 nghiệm phân biết thì \(\Delta^,>0\)
=> \(m< 3\)
- Theo vi ét : \(\left\{{}\begin{matrix}x_1+x_2=-\frac{b}{a}=4\\x_1x_2=\frac{c}{a}=m+1\end{matrix}\right.\)
- Để \(x^2_1+x^2_2=3\left(x_1+x_2\right)\)
<=> \(\left(x_1+x_2\right)^2-2x_1x_2=3\left(x_1+x_2\right)\)
<=> \(4^2-2\left(m+1\right)=3.4=12\)
<=> \(-2\left(m+1\right)=-4\)
<=> \(m+1=2\)
<=> \(m=1\left(TM\right)\)
Vậy ....