Cho pt \(x^2+2\left(m-2\right)x-m^2-5=0\). Tìm tất cả tham số m để pt có 2 nghiệm pb x1,x2( giả sử x1<x2) thỏa mãn \(\left|x_1\right|-\left|x_2+1\right|=5\)
Cho PT: x2 - 2(m+1)x + 2m - 3 = 0
Tìm các giá trị của m để PT có 2 nghiệm phân biệt x1, x2 thỏa mãn biểu thức \(P=\left|\dfrac{x_1+x_2}{x_1-x_2}\right|\) đạt giá trị nhỏ nhất.
cho pt:x2 - (m-1)x- m2+m-2=0
Gọi x1, x2 là nghiệm của pt. Tìm m để
B=\(\left(\dfrac{x_1}{x_2}\right)^3+\left(\dfrac{x_2}{x_1}\right)^3\) đạt GTLN
Cho pt: x2 - 2(m - 1)x + m + 1 = 0
Tìm m để phương trình có 2 nghiệm x1, x2 thoả mãn \(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}=4\)
Câu 1.Cho pt (m-3)x2-2(m+2)x+m+1=0 (1)
a, Tìm m để pt (1) có nghiệm.Tím nghiệm x2 biết x1=2
b,Tìm m để pt (1)có 2 nghiệm x1,x2 thỏa mãn \(\dfrac{1}{x_1}+\dfrac{1}{x_2}=10\)
Câu 2.Cho pt (m-2)x2+2(m+1)x+m-1=0
a, Tìm m để pt có 2 nghiệm cùng dấu
b, Tìm m để pt có 2 nghiệm x1,x thỏa mãn x13+x23=64
Câu 3.Tìm m để pt
2x2+2(2m+1)x+2m2+m-1=0 có 2 nghiệm x1, x2 sao cho \(\dfrac{x_1^2}{x_2^2}+\dfrac{x^2_2}{x^2_1}>7\)
Cho pt: \(x^2-\left(m+3\right)x+m+2=0\)
Tìm m để pt có nghiệm x1, x2 thỏa mãn : \(x_1^3-x_2^3=-7\)
cho pt \(x^2+2\left(m+1\right)x+m-4=0\)
a) cm pt luôn có 2 nghiêm phân biệt vơi moi m
b) tìm m để pt có 2 nghiệm x1, x2 tm: \(x_1^2+x_2^2+3x_1x_2=0\)
Cho \(x^2-2\left(m-1\right)x+\left(m+1\right)^2=0\) có 2 nghiệm x1, x2 t/m \(x_1+x_2\le4\). Tìm MAX, MIN của \(P=x_1^3+x_2^3+x_1.x_2\left(3x_1+3x_2\right)+8x_1.x_2\)
Tìm m nguyên dương để pht: \(x^2-2\left(m-1\right)x+2m-6=0\) có 2 nghiệm x1, x2 sao cho:\(A=\left(\dfrac{x_1}{x_2}\right)^2+\left(\dfrac{x_1}{x_2}\right)^2\) có giá trị nguyên