a: Khi m=2 thì pt sẽ là \(x^2-2=0\)
hay \(x\in\left\{\sqrt{2};-\sqrt{2}\right\}\)
b: \(\text{Δ}=\left(2m-3\right)^2-4\left(m^2-3m\right)\)
\(=4m^2-12m+9-4m^2+12m=9>0\)
Do đó: PT luôn có hai nghiệm phân biệt
Để PT có 2 nghiệm dương thì \(\left\{{}\begin{matrix}2m-3>0\\m^2-3m>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>\dfrac{3}{2}\\m\in\left(-\infty;0\right)\cup\left(3;+\infty\right)\end{matrix}\right.\Leftrightarrow m\in\left(3;+\infty\right)\)
Để pt có 2 nghiệm trái dấu thì m(m-3)<0
=>0<m<3