\(\Delta=\left(2m-1\right)^2-8\left(m-1\right)=\left(2m-3\right)^2\ge0;\forall m\)
\(\Rightarrow\) Phương trình có nghiệm với mọi m
b/Kết hợp Viet và điều kiện đề bài ta có hệ:
\(\left\{{}\begin{matrix}x_1+x_2=\frac{-2m+1}{2}\\2x_1-4x_2=3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2x_1+2x_2=-2m+1\\2x_1-4x_2=3\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x_2=\frac{-m-1}{3}\\x_1=\frac{-4m+5}{6}\end{matrix}\right.\)
Mà \(x_1x_2=\frac{m-1}{2}\Rightarrow\left(\frac{-m-1}{3}\right)\left(\frac{-4m+5}{6}\right)=\frac{m-1}{2}\)
\(\Leftrightarrow2m^2-5m+2=0\Rightarrow\left[{}\begin{matrix}m=2\\m=\frac{1}{2}\end{matrix}\right.\)
c/ Để pt có nghiệm kép \(\Leftrightarrow\left(2m-3\right)^2=0\Rightarrow m=\frac{3}{2}\)
Khi đó \(x_1=x_2=\frac{-2m+1}{4}=-\frac{1}{2}\)
d/ \(\left\{{}\begin{matrix}x_1+x_2=\frac{-2m+1}{2}\\x_1x_2=\frac{m-1}{2}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1+x_2=\frac{-2m+1}{2}\\2x_1x_2=\frac{2m-2}{2}\end{matrix}\right.\)
\(\Rightarrow x_1+x_2+2x_1x_2=-\frac{1}{2}\)
Đây là hệ thức liên hệ 2 nghiệm ko phụ thuộc m