áp dụng hệ thức vi ét ta có : \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{9}{2}\\x_1x_2=\dfrac{1}{2}\end{matrix}\right.\)
1) \(x_1x_2^2+x_2x_1^2=x_1x_2\left(x_1+x_2\right)\) (1)
thay vào ta có : (1) \(\Leftrightarrow\) \(\dfrac{9}{2}.\dfrac{1}{2}=\dfrac{9}{4}\) vậy \(x_1x_2^2+x_2x_1^2=\dfrac{9}{4}\)
2) \(\dfrac{1}{x_1^3}+\dfrac{1}{x_2^2}\) = \(\dfrac{x_1^3+x^3_2}{\left(x_1x_2\right)^3}\) = \(\dfrac{\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)}{\left(x_1x_2\right)^3}\) (2)
thay vào ta có : (2) \(\Leftrightarrow\) \(\dfrac{\left(\dfrac{9}{2}\right)^3-3\left(\dfrac{1}{2}\right)\left(\dfrac{9}{2}\right)}{\left(\dfrac{1}{2}\right)^3}\)
= \(675\)