a) thay m = 3 ta có pt:
x2 + 10x + 3 = 0
<=> xét delta phẩy
25 - 3 = 22
\(\left[{}\begin{matrix}x1=-5+\sqrt{22}\\x2=-5-\sqrt{22}\end{matrix}\right.\)
vậy S={ \(-5+\sqrt{22}\);\(-5-\sqrt{22}\)}
b) xét delta phẩy
(m+2)2 - m2 + 6
= 4m +10
để phương trình có 2 nghiệm x1;x2 thì delta phẩy ≥ 0
=> m ≥ \(\dfrac{-10}{4}\)
theo Vi-ét ta có:
\(\left\{{}\begin{matrix}x1+x2=-2m-4\\x1x2=m^2-6\end{matrix}\right.\)
theo bài ra ta có:
x12 + x22 = 16
<=> (x1+x2)2 - 2x1x2 = 16
=> 4m2 + 16m + 16 - 2m2 + 12 = 16
<=> 2m2 + 16m + 12 = 0
<=> m2 + 8m + 6 = 0
giải ra \(\left[{}\begin{matrix}m=-4+\sqrt{10}\\m=-4-\sqrt{10}\end{matrix}\right.\)
vậy m = \(-4+\sqrt{10}\) để pt có 2 nghiệm thỏa mãn hệ thức x12 + x22 = 16
( m = -4-\(\sqrt{10}\) loại)