Gọi (x1;y1) ; (x2;y2) là hai nghiệm của hệ pt \(\left\{{}\begin{matrix}x-4y-4=0\\x^2+y-3x-3y-22+m=0\end{matrix}\right.\)
Tìm m để \(\sqrt{\left(x_1-x_2\right)^2+\left(y_1-y_2\right)^2}=7\)
cho phương trình ẩn x2 -5x+m-2=0
Tìm m để pt có 2 nghiệm dương phân biệt x1 x2 thõa mãn hệ thức
2(\(\dfrac{1}{\sqrt{x_1}}+\dfrac{1}{\sqrt{x_2}}\))=3
Cho phương trình \(x^2\)+3x+m-1=0 ( x là ẩn)
a) giải ptr vs m=3
b) Định m để phương trình có 2 nghiệm x1,x2 thỏa mãn:
\(x^2_1.\left(x_1^4-1\right)+x_2.\left(32x^4_2-1\right)=3\)
cho phương trình:\(x^2+2mx+m^2+m=0\) (với x là ẩn số)
a.Giải phương trình với m=-3
b.tìm giá trị của m để phương trìn có 2 nghiệm \(x_1,x_2\) thỏa mãn điều kiện \(\left(x_1-x_2\right)\left(x_1^2-x^2_2\right)=32\)
Gọi \(x_1;x_2\) là hai nghiệm của phương trình \(2012x^2-\left(20a-11\right)x-2012=0\) (a là số thực). Tìm giá trị nhỏ nhất của biểu thức \(P=\dfrac{3}{2}\left(x_1-x_2\right)^2+2\left(\dfrac{x_1-x_2}{2}+\dfrac{1}{x_1}-\dfrac{1}{x_2}\right)^2\)
Bài 3. Cho phương trình: \(^{x^2-mx-4=0}\) (m là tham số) (1)
a) Chứng minh phương trình (1) luôn có hai nghiệm phân biệt \(x_1,x_2\) với mọi giá trị của m.
b) Tìm giá trị của m để phương trình (1) có hai nghiệm \(x_1,x_2\) thỏa mãn điều kiện: \(x_1^2+x_1^2=5\).
c) Tìm hệ thức liên hệ giữa \(x_1,x_2\) không phụ thuộc giá trị của m.
Cho hệ phương trình\(\left\{{}\begin{matrix}2mx+3ny=7\\3mx-ny=5\end{matrix}\right.\).
tìm giá trị của m và n biết rằng hệ pt nhận x=1 y=1
Giải phương trình:
1. \(\left\{{}\begin{matrix}5x-2y=-9\\4x+3y=2\end{matrix}\right.\)
2. \(\left\{{}\begin{matrix}2x+y-4=0\\x+2y-5=0\end{matrix}\right.\)
3. \(\left\{{}\begin{matrix}2x+3y-7=0\\x+2y-4=0\end{matrix}\right.\)
4. \(\left\{{}\begin{matrix}5x+6y=17\\9x-y=7\end{matrix}\right.\)
Giải hệ phương trình:
a)\(\left\{{}\begin{matrix}\dfrac{3x+2}{x-1}-\dfrac{3y-1}{y+2}=0\\\dfrac{2}{x-1}+\dfrac{3}{y+2}=1\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}\dfrac{4x-5}{x+1}+\dfrac{2y-3}{y-5}=8\\\dfrac{3}{x+1}-\dfrac{2}{y-5}=-1\end{matrix}\right.\)
c)\(\left\{{}\begin{matrix}\dfrac{x+y-2}{x+1}+\dfrac{3-x}{y+1}=\dfrac{5}{4}\\\dfrac{3\left(x+y-2\right)}{x+1}-\dfrac{5-x+2y}{y+1}=\dfrac{3}{4}\end{matrix}\right.\)
d)\(\left\{{}\begin{matrix}\dfrac{x-y+1}{x-3}+\dfrac{x+1}{y-3}=\dfrac{-7}{2}\\\dfrac{2\left(x-y+1\right)}{x-3}-\dfrac{x+y-2}{y-3}=-\dfrac{9}{2}\end{matrix}\right.\)
e)\(\left\{{}\begin{matrix}x^2-y^2+2y=1\\\left(x+y\right)^2-2x-2y=0\end{matrix}\right.\)
f)\(\left\{{}\begin{matrix}4x^2+y^2-4xy=4\\x^2+y^2-2\left(xy+8\right)=0\end{matrix}\right.\)