Bài tập cuối chương 6

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
datcoder

Cho phương trình x2 – 11x + 30 = 0. Gọi x1, x2 là hai nghiệm của phương trình. Không giải phương trình, hãy tính:

a) \(x_1^2+x_2^2\);                        b) \(x^3_1+x^3_2\).

datcoder
21 tháng 10 2024 lúc 23:01

Vì \(\Delta  = {\left( { - 11} \right)^2} - 4.30 = 1 > 0\) nên phương trình có hai nghiệm phân biệt.

Theo định lí Viète ta có: \({x_1} + {x_2} = 11;{x_1}.{x_2} = 30\).

a) Ta có: \(x_1^2 + x_2^2 = {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2} = {11^2} - 2.30 = 61\)

b) \(x_1^3 + x_2^3 = {\left( {{x_1} + {x_2}} \right)^3} - 3{x_1}{x_2}\left( {{x_1} + {x_2}} \right) = {11^3} - 3.30.11 = 341\)