Ôn thi vào 10

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
9D-21-Bùi Quang Khải-ĐH

Cho phương trình: (m + 1) * x ^ 2 - 2(m - 1) * x + m - 2 = 0 (1)(x l hat a hat a n) a) Giải phương trình (1) khi m = 0 . b) Tìm giá trị của m để phương trình (1) có hai nghiệm phân biệt.

9D-21-Bùi Quang Khải-ĐH
10 tháng 4 2022 lúc 11:27

Các bạn giúp mình với ạ

9D-21-Bùi Quang Khải-ĐH
10 tháng 4 2022 lúc 11:27

undefined

Nguyễn Việt Lâm
10 tháng 4 2022 lúc 11:40

a. Bạn tự giải

b. 

Phương trình có 2 nghiệm pb khi:

\(\left\{{}\begin{matrix}m+1\ne0\\\Delta'=\left(m+1\right)^2-\left(m+1\right)\left(m-2\right)>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne-1\\m>-1\end{matrix}\right.\) \(\Rightarrow m>-1\) (1)

c.

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2\left(m-1\right)}{m+1}\\x_1x_2=\dfrac{m-2}{m+1}\end{matrix}\right.\)

Để biểu thức đề bài xác định \(\Rightarrow x_1x_2\ne0\Rightarrow m\ne2\), khi đó:

\(\dfrac{1}{x_1}+\dfrac{1}{x_2}=\dfrac{7}{4}\Rightarrow\dfrac{x_1+x_2}{x_1x_2}=\dfrac{7}{4}\)

\(\Rightarrow4\left(x_1+x_2\right)=7x_1x_2\)

\(\Rightarrow\dfrac{8\left(m-1\right)}{m+1}=\dfrac{7\left(m-2\right)}{m+1}\)

\(\Rightarrow8\left(m-1\right)=7\left(m-2\right)\)

\(\Rightarrow m=-6< -1\) (ktm (1))

Vậy ko tồn tại m thỏa mãn yêu cầu đề bài


Các câu hỏi tương tự
Kim Taehyungie
Xem chi tiết
Thanh Trúc
Xem chi tiết
Kim Taehyungie
Xem chi tiết
Anh Quynh
Xem chi tiết
Thanh Trúc
Xem chi tiết
Muội Yang Hồ
Xem chi tiết
????????????????
Xem chi tiết
chanh
Xem chi tiết
Phạm Quang Vũ
Xem chi tiết