Ôn thi vào 10

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Niki Rika

Cho phương trình ẩn \(x\)\(x^2-2\left(m-1\right)x-2=0\) (\(m\) là tham số). Tìm \(m\) để phương trình có 2 nghiệm phân biệt \(x_1\)\(x_2\) sao cho biểu thức: \(A=x_1^2+4x_2^2\) có giá trị nhỏ nhất.

Nguyễn Ngọc Huy Toàn
17 tháng 5 2022 lúc 20:07

\(\Delta=\left[-2\left(m-1\right)\right]^2-4.\left(-2\right)\)

   \(=4m^2-8m+8+8\)

   \(=4m^2-8m+16\)

   \(=3m^2+\left(m-4\right)^2\)

Để pt có 2 nghiệm phân biệt thì \(\Delta>0\)

                                                  \(\Leftrightarrow\left\{{}\begin{matrix}m>0\\m>4\end{matrix}\right.\) \(\rightarrow m>4\)

Theo hệ thức Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m-2\left(1\right)\\x_1x_2=-2\end{matrix}\right.\)

\(A=x_1^2+4x_2^2\)

\(A=x_1^2+\left(2x_2\right)^2\)

\(\Rightarrow Min_A=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x_1=0\\x_2=0\end{matrix}\right.\)

Thế vào (1) ta được: \(0=2m-2\)

                                \(\Leftrightarrow m=1\)

 


Các câu hỏi tương tự
Anh Phạm
Xem chi tiết
Pink Pig
Xem chi tiết
Kim Taehyungie
Xem chi tiết
Zenitisu
Xem chi tiết
Thanh Trúc
Xem chi tiết
Mai Anh Phạm
Xem chi tiết
Mai Anh Phạm
Xem chi tiết
sgfr hod
Xem chi tiết
hilo
Xem chi tiết