\(P=\dfrac{1}{2}+\sqrt{x}\ge\dfrac{1}{2}\)
Dấu "=" xảy ra khi:\(x=0\)
\(Q=7-2\sqrt{x-1}\le7\)
Dấu "=" xảy ra khi:\(x=1\)
Để P có GTNN => \(\sqrt{x}\) phải là số nhỏ nhất có thể.
\(\sqrt{x}\) nhỏ nhất <=> x là số tự nhiên nhỏ nhất
=> x = 0
Vậy GTNN của P = \(\dfrac{1}{2}+\sqrt{0}\) = \(\dfrac{1}{2}\)
Để Q có GTLN => \(\sqrt{x-1}\) phải là số nhỏ nhất có thể
\(\sqrt{x-1}\) nhỏ nhất <=> x-1 là số tự nhiên nhỏ nhất
=> x-1 = 0 => x = 1
Vậy GTLN của Q =\(7-2\sqrt{x-1}=7-2\sqrt{1-1}=7-2\sqrt{0}=7-2.0=7-0=7\)
\(P=\dfrac{1}{2}+\sqrt{x}\ge\dfrac{1}{2}\)
Dấu "=" xảy ra khi : \(x=0\)
\(Q=7-2\sqrt{x-1}\le7\)
Dấu "=" xảy ra khi : \(x=1\)