Chương II - Hàm số bậc nhất

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hoàng Linh Chi

Cho Parabol (P): \(y=\frac{x^2}{3}\) và đường thẳng (d) đi qua M(1; 12) với hệ số góc k. Tìm k biết đường thẳng (d) cắt (P) tại hai điểm \(A\left(x_1;y_1\right)\), \(B\left(x_2;y_2\right)\) thỏa mãn \(\frac{y_2}{x_1}+\frac{y_1}{x_2}\)

Hoàng Tử Hà
27 tháng 6 2019 lúc 10:17

Gọi ptđt (d) có dạng: y= kx+b

Vì M(1;12)\(\in\) (d)

Thay xM= 1; yM= 12 vào (d)

\(k+b=12\Rightarrow b=12-k\)

Xét PTHĐGĐ của (d) và (P)

\(\frac{x^2}{3}=kx+b\Leftrightarrow x^2-3kx-3b=0\)

\(\Delta=9k^2+12b=9k^2-12k+144>0\forall x\)

\(\Rightarrow\) phương trình luôn có 2 nghiệm phân biệt

Theo Vi-ét:

\(\left\{{}\begin{matrix}x_1+x_2=3k\\x_1x_2=-3b=-3\left(12-k\right)=3k-36\end{matrix}\right.\)

\(\frac{y_2}{x_1}+\frac{y_1}{x_2}=\frac{\left(kx_2+b\right)x_2+\left(kx_1+b\right)x_1}{x_1x_2}=\frac{k\left(x_1+x_2\right)^2-2kx_1x_2+b\left(x_1+x_2\right)}{x_1x_2}\)

Đến đây gần xong rùi, bạn thay hệ thức Vi-ét vào rùi giải là OK


Các câu hỏi tương tự
Nguyễn Thu Trà
Xem chi tiết
Duong Thi Nhuong
Xem chi tiết
Ththieuvan truong
Xem chi tiết
Chan
Xem chi tiết
nguyễn phương ngọc
Xem chi tiết
Nguyễn TQ
Xem chi tiết
Tạ Bla Bla
Xem chi tiết
illumina
Xem chi tiết
hải anh thư hoàng
Xem chi tiết