Bạn áp dụng giải giao điểm hai đồ thị P và d tứ là cho P và d để tìm giải pt. Sau khi có pt dạng bậc hai thì giải tìm Δ. Có hai điểm phân biệt= hai nghiệm, tiếp xúc= nghiệm kép, không giao nhau= vô nghiệm.
Bạn áp dụng giải giao điểm hai đồ thị P và d tứ là cho P và d để tìm giải pt. Sau khi có pt dạng bậc hai thì giải tìm Δ. Có hai điểm phân biệt= hai nghiệm, tiếp xúc= nghiệm kép, không giao nhau= vô nghiệm.
Cho parabol \(\left(P\right):y=x^2\) và đường thẳng \(\left(d\right):y=\left(2m+1\right)x+1-m^2\) (với m là tham số). Tìm m để (d) cắt (P) tại 2 điểm nằm về hai phía của trục tung
1. Cho đường thẳng (d):y=2mx+2m-3 và Parabol (P):y=x\(^2\)
a) Tìm m để đường thẳng (d) đi qua A(1;5)
b) Tìm m để đường thẳng (d) tiếp xúc với Parabol (P)
Giải hộ mình câu c thôi nhoa!
Cho: \(\left(P\right):y=x^2\) và \(\left(d\right):y=2.\left(m-1\right)x+m^2+2m\)
a) Tìm tọa độ giao điểm của (d) và (P) với m=-1
b) Tìm m để (d) cắt (P) tại 2 điểm phân biệt có hoành độ x1, x2 thỏa mãn: \(x_1^2+x_2^2+4x_1x_2=36\)
c) Tìm 2 điểm thuộc (P) sao cho 2 điểm đó đối xứng với nhau qua M(-1;5)
Trong mặt phẳng tọa độ Oxy cho parabol \(\left(P\right):y=x^2\) và đường thẳng \(\left(d\right):y=2.\left(m-2\right)x+5\). Tìm điều kiện của m để đường thẳng (d) cắt đường cong (P) tại 2 điểm phân biệt có hoành độ x1, x2 (Giả sử x1<x2) thỏa mãn: \(\left|x_1\right|-\left|x_2+2\right|=10\)
Trong mặt phẳng tọa độ Oxy, cho hai đường thẳng \(\left(d_1\right):y=2x+m;\left(d_2\right):y=\left(m^2+1\right)x-1\) (Với m là tham số)
a) Tìm m để d1 cắt Ox ở A, cắt Oy ở B (A và B khác O) sao cho \(AB=2\sqrt{5}\)
b) Tìm tọa độ giao điểm C của d1 và d2 khi m=2
Trong mặt phẳng tọa độ Oxy, cho parabol: \(\left(P\right):y=x^2\) và đường thẳng (d): y=\(3x+m^2-1\). Chứng minh rằng với mọi m, (d) luôn cắt (P) tại 2 điểm phân biệt có hoành độ lần lượt là x1,x2. Tìm m để \(\left|x_1\right|+2.\left|x_2\right|=3\)
Cho đường thẳng d la : y=2mx+3-m-x
Xác định m để:
a) Đường thẳng d qua gốc tọa độ
b)Đường thẳng d song song với đường thẳng 2y-x=5
c)Đường thẳng d tạo với Ox một góc nhọn
đ)Đường thẳng d tạo với Ox một góc tù. Đường thẳng d cắt Ox tại điểm có hoành độ 2
f)Đường thẳng d cắt đồ thị hàm số y = 2x-3 tại một điểm có hoành độ là 2
g)Đường thẳng d cắt đồ thị hàm số y=-x+7 tại một điểm có tung độ y=4
h)Đường thẳng d đi qua giao điểm của hai đường thẳng 2x-3y=-8 và y=-x+1
Cho đường thẳng d la : y=2mx+3-m-x
Xác định m để:
a) Đường thẳng d qua gốc tọa độ
b)Đường thẳng d song song với đường thẳng 2y-x=5
c)Đường thẳng d tạo với Ox một góc nhọn
đ)Đường thẳng d tạo với Ox một góc tù. Đường thẳng d cắt Ox tại điểm có hoành độ 2
f)Đường thẳng d cắt đồ thị hàm số y = 2x-3 tại một điểm có hoành độ là 2
g)Đường thẳng d cắt đồ thị hàm số y=-x+7 tại một điểm có tung độ y=4
h)Đường thẳng d đi qua giao điểm của hai đường thẳng 2x-3y=-8 và y=-x+1
BÀI 1 :Cho parabol y=x^2 và đường thẳng d:y= -2x+m
1. Với m = 3, hãy:
a) Vẽ (d) và (P) trên cùng một mặt phẳng tọa độ.
b) Tìm tọa độ các giao điểm M và N của (d) và (P).
c) Tính độ dài đoạn thẳng MN.
2. Tìm các giá trị của m để:
a) (d) và (P) tiếp xúc nhau.
b) (d) cắt (P) tại hai điểm phân biệt.
BÀI 2:
Trong mặt phẳng tọa độ Oxy cho M(1;2) và đường thẳng d: y=-3x+1
1. Viết phương trình đường thẳng (d') đi qua M và song song với (d).
2. Cho parabol P: y=mx^2. Tìm các giá trị của tham số m để (d) và (P) cắt nhau tại hai điểm phân biệt A, B nằm cùng phía đối với trục tung.
BÀI 3:
Cho parabol P: y=x^2 và đường thẳng d:y= 2mx-2m+3
a) Tìm tọa độ các điểm thuộc (P) biết tung độ của chúng bằng 2.
b) Chứng minh với mọi giá trị của tham số m thì đường thẳng (d) luôn cắt parabol (P) tại hai điểm phân biệt.
c) Gọi y1,y2 là tung độ các giao điểm của (d) và (P). Tìm các giá trị của tham số m để y1+y2<9
BÀI 4:
Cho parabol P:y=ã^2 và đường thẳng d:y= 2mx-m+2
1. Xác định tham số a biết (P) đi qua A(1;-1).
2. Biện luận số giao điểm của (P) và (d) theo tham số m.
BÀI 5:
Cho parabol P:y=x^2/2 và đường thẳng d:y= 1/2*x+2
1. Với n = 1, hãy:
a) Vẽ (d) và (P) trên cùng một mặt phẳng tọa độ.
b) Tìm tọa độ các giao điểm A và B của (d) và (P).
c) Tính diện tích tam giác AOB.
2. Tìm các giá trị của n để:
a) (d) và (P) tiếp xúc nhau.
b) (d) cắt (P) tại hai điểm phân biệt.
c) (d) cắt (P) tại hai điểm nằm về hai phía đối của trục Oy.
Trong mặt phẳng tọa độ Oxy, cho parabol: \(\left(P\right):y=x^2\)và đường thẳng (d): \(y=3x+m^2-1\). Chứng minh rằng với mọi m, (d) luôn cắt (P) tại 2 điểm phân biệt có hoành độ lần lượt là x1,x2. Tìm m để |x1|+2.|x2|=3