Cho \(\Delta ABC\) có 3 góc nhọn nội tiếp đường tròn (O) ( AB < AC ). Các tiếp tuyến với (O) tại B và C cắt nhau tại N. Vẽ dây AM song song với BC. Đường thẳng MN cắt đường tròn (O) tại M và P
a) Cho biết \(\frac{1}{OB^2}+\frac{1}{NC^2}=\frac{1}{16}\). Tính độ dài đoạn BC
b) Chứng minh rằng : \(\frac{BP}{AC}=\frac{CP}{AB}\)
c) chứng minh rằng BC, ON và AP đồng quy
Cho tam giác ABC vuuong cân tại đỉnh A. Gọi D là trung điểm của cạnh BC. Qua D dựng đường thẳng vuông góc với AB tại M. Lấy điểm N đối xứng với D qua M. Từ giao điểm P của AB và CN, hạ đoạn thẳng PQ vuông góc với BC tại Q. Các tia CP và QM cắt nhau tại E.
a) Chứng minh tứ giác MPDQ nội tiếp một đường tròn.
b) Chứng minh BE vuông góc với CN.
c) Chứng minh tia EC là tia phân giác của góc AEQ
Cho tam giác ABC nội tiếp đường tròn (O). Gọi M, N, P lần lượt là điểm chính giữa của các cung BC, CA, AB.
a) Chứng minh ba đường thẳng AM; BN; CP đồng quy tại một điểm I
b) Chứng minh tam giác MBI là tam giác cân.
c) Gọi E là giao điểm của MP với AB, F là giao điểm của MN với AC. Chứng minh EI//BC. Suy ra E; I; F thẳng hàng.
d) Chứng minh \(\frac{AE}{EB}=\frac{AB}{BD}\) (D là giao điểm của AM với BC)
1 . Cho a,b,c thực dương t.m: a+b+c=2
CMR: \(P=\frac{ab}{\sqrt{\left(ab+2c\right)}}+\frac{bc}{\sqrt{\left(bc+2a\right)}}+\frac{ca}{\sqrt{\left(ca+2b\right)}}\le1\)
2 . Cho tam giác ABC nhọn có góc BAC> góc ACB. Đường tròn tâm O nội tiếp tam giác ABC tiếp xúc với các cạnh AB, BC, CA lần lượt tại M,N,E. Gọi K là giao điểm của BO và NE. Chứng minh
a ) \(\widehat{AOB}=90^0+\frac{\widehat{ACB}}{2}\)
b )
b) 5 điểm A, M, K, O, E cùng thuộc một đường tròn
c Gọi T là giao điểm BO với AC. Chứng minh: KT.BN = KB.ET
Cho đường tròn(O,R) .Một điểm A cố định bên ngoài đường tròn sao cko OA=2R.Kẻ các tiếp tuyến AM,AN .Đường thẳng qua A cắt đường tròn tại 2 điểm (B giữa C và A) .Gọi H là giao điểm của OA và MN
a)Chứng minh AMON nội tiếp
b)CM AB.AC=AH.AO
c)Gọi I là trung điểm của dây BC .Tính số đo CAN để IM=2IN
Cho tam giác ABC vuông tại A có đường cao AH, biết CH = 9 cm và BH = 4 cm. Gọi D là điểm đối xứng của A qua BC và E là giao điểm của hai tia CA, DB. Qua E kẻ đường thẳng vuông góc với BC cắt đường thẳng BC tại F, cắt đường thẳng AB tại G. Qua C kẻ đường thẳng song song với AG cắt đường thẳng AD tại K. a) Tính độ dài đường cao AH, cạnh AB của tam giác ABC b) Chứng minh AC bình = CH.HB+ AH.HK c) Chứng minh rằng FA là tiếp tuyến của đường tròn đường kính BC
Cho đường tròn (O;R) và điểm A cố định nằm ngoài đường tròn. Qua A kẻ hai tiếp tuyến AM, AN tới đường tròn ( M , N là các tiếp điểm). Một đường thẳng d qua A cắt đường
tròn (O;R) tại B và C ( AB<AC ). Gọi I là trung điểm của BC . Đường thẳng qua B , song song với AM cắt MN tại E .
a) Chứng minh 5 điểm A , M , O, I , N thuộc một đường tròn.
b) Chứng minh AB.AC=\(AM^2\)
c) Chứng minh IE // MC .
d) Chứng minh rằng khi đường thẳng d quay quanh điểm A thì trọng tâm G của tam giác MBC thuộc một đường tròn cố định.
Cho tam giác ABC vuông tại A (AB<AC). Kẻ đường cao AH của tam giác ABC. Gọi D và E lần lượt là hình chiếu của H trên AB và AC.
a) Biết AB=6cm và HC=6,4cm. Tính AC và BC.
b) CMR: \(DE^3=BC.BD.CE\)
c) Đường thẳng qua B vuông góc với BC cắt HD tại M; đường thẳng qua C vuông góc với BC cắt HE tại N. Chứng minh: M, A, N thẳng hàng
d) CM: Ba đường thẳng BN, CM, DE đồng quy
Cho tam giác ABC vuông tại A (AB<AC). Kẻ đường cao AH của tam giác ABC. Gọi D và E lần lượt là hình chiếu của H trên AB và AC.
a) Biết AB=6cm và HC=6,4cm. Tính AC và BC.
b) CMR: \(DE^3=BC.BD.CE\)
c) Đường thẳng qua B vuông góc với BC cắt HD tại M; đường thẳng qua C vuông góc với BC cắt HE tại N. Chứng minh: M, A, N thẳng hàng
d) CM: Ba đường thẳng BN, CM, DE đồng quy