Lời giải:
Ta có \(P=\frac{x^2}{x-1}=\frac{x^2-1+1}{x-1}=x+1+\frac{1}{x-1}\)
\(\Leftrightarrow P=2+x-1+\frac{1}{x-1}\)
Vì \(x>1\rightarrow x-1>0\). Áp dụng BĐT AM-GM:
\(x-1+\frac{1}{x-1}\geq 2\sqrt{\frac{x-1}{x-1}}=2\)
Suy ra \(P\geq 2+2=4\)
Vậy \(P_{\min}=4\Leftrightarrow (x-1)^2=1\Leftrightarrow x=2\)