Cho \(\overrightarrow{a}=\left(-5;0\right)\), \(\overrightarrow{b}=\left(4;x\right)\). Tìm x để hai vectơ \(\overrightarrow{a}\), \(\overrightarrow{b}\) cùng phương?
A. x=-15
B. x=4
C. x=0
D. x=-1
Cho ΔABC . Tìm tập hợp điểm M thoả mãn :
a, \(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=\frac{3}{2}\left|\overrightarrow{MB}+\overrightarrow{MC}\right|\)
b, \(\left|\overrightarrow{MA}+\overrightarrow{MC}\right|=\left|\overrightarrow{MA}-\overrightarrow{MB}\right|\)
c,\(\left|\overrightarrow{2MA}+\overrightarrow{MB}\right|=\left|\overrightarrow{4MB}-\overrightarrow{MC}\right|\)
d, \(\left|\overrightarrow{4MA}-\overrightarrow{MB}+\overrightarrow{MC}\right|=\left|\overrightarrow{2MA}-\overrightarrow{MB}-\overrightarrow{MC}\right|\)
cho tam giác ABC . tìm tập hợp điểm M trong các trường hợp sau :
a, \(\left|2\overrightarrow{MA}+3\overrightarrow{MB}\right|=\left|3\overrightarrow{MB}-2\overrightarrow{MC}\right|\)
b, \(\left|4\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=\left|2\overrightarrow{MA}-\overrightarrow{MB}-\overrightarrow{MC}\right|\)
Tìm tập hợp điểm m thỏa mãn:
a) \(\left|\overrightarrow{2MA}+\overrightarrow{MB}\right|=\left|4\overrightarrow{MB}-\overrightarrow{MC}\right|\)
b)\(\left|4\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=\left|2\overrightarrow{MA}-\overrightarrow{MB}-\overrightarrow{MC}\right|\)
Cho tam giác ABC. Tìm quỹ tích điểm M sao cho:
a.\(\left|\overrightarrow{MA}+\overrightarrow{MB}\right|\) = \(\left|\overrightarrow{MA}-\overrightarrow{MB}\right|\)
b. \(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=\dfrac{3}{2}\left|\overrightarrow{MA}+\overrightarrow{MB}\right|\)
c. \(\left|\overrightarrow{MA}+2\overrightarrow{MB}+\overrightarrow{MC}\right|\) = \(\left|\overrightarrow{MA}+\overrightarrow{MB}-2\overrightarrow{MC}\right|\)
Tìm 2 số h,k sao cho \(\overrightarrow{u}=h.\overrightarrow{a}+k.\overrightarrow{b}\) biết \(\overrightarrow{u}=\left(8;-6\right)\), \(\overrightarrow{a}=\left(2;4\right)\), \(\overrightarrow{b}=\left(3;-5\right)\)
cho hai vecto \(\overrightarrow{a}\), \(\overrightarrow{b}\) thỏa mãn \(\left|\overrightarrow{a}\right|=\left|\overrightarrow{b}\right|=1\) và \(\overrightarrow{a}.\overrightarrow{b}=3\). Đọ dài vecto \(\left|3\overrightarrow{a}+5\overrightarrow{b}\right|\)
cho 2 vecto \(\overrightarrow{a},\overrightarrow{b}\) thoa man \(\left|\overrightarrow{a}\right|=4,\left|\overrightarrow{b}\right|=3\) và \(\left|\overrightarrow{a}+2\overrightarrow{b}\right|=2\sqrt{7}\). Tính \(\left(\overrightarrow{a},\overrightarrow{b}\right)=????\)
cho tam giác ABC vuông tại A, biết AB=3a, AC=4a. Tập hợp các điểm M thỏa mãn
a) \(\left|3\overrightarrow{MA}-\overrightarrow{MC}\right|=\left|\overrightarrow{BC}-2\overrightarrow{AB}\right|\)
b) \(2\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=3\left|\overrightarrow{BA}-2\overrightarrow{AC}\right|\)