a: Xét (O) có
AM,AN là tiếp tuyến
nên AM=AN
mà OM=ON
nên OA là trung trực của MN
b: Xet (O) có
ΔMNE nội tiếp
ME là đườngkính
=>ΔMNE vuông tại N
=>NE//OA
a: Xét (O) có
AM,AN là tiếp tuyến
nên AM=AN
mà OM=ON
nên OA là trung trực của MN
b: Xet (O) có
ΔMNE nội tiếp
ME là đườngkính
=>ΔMNE vuông tại N
=>NE//OA
Cho đường tròn (O), đểm A nằm bên ngoài đường tròn. Kẻ các tiếp tuyến AM, AN với đường tròn (M,N là các tiếp điểm) a) Chứng minh: OAMN b) Vẽ đường kính NOC. Chứng minh: MC // AO c) Tính chu vi AMN biết OM= 3cm và OA = 5cm
Cho đường tròn (O;R) và một điểm A ở ngoài đường tròn. Kẻ tiếp tuyến AB với đường tròn (O) (B là tiếp điểm). Qua B kẻ BH vuông góc với OA cắt đường tròn tại C.
a, Giả sử R = 6 cm, OA = 10 cm. Tính độ dài OH và góc BAO (làm tròn đến độ)
b, Chứng minh rằng AC là tiếp tuyến của (O)
c, Vẽ đường kính BD của (O). Gọi K là hình chiếu của C trên BD. Chứng minh AC.CD = CK.AO
d, AD cắt CK tại I. Chứng minh rằng I là trung điểm của CK.
Bài 1. Cho dường tròn (O,R) và điểm A nằm ngoài (O). Từ A kẻ tiếp tuyến AB, AC (B,C là tiếp điểm), OA cắt BC tại H
a) Chứng minh: OA là trung trực của BC
b) Qua B kẻ dường thẳng song song với OA cắt đường tròn (0) tại D, AD cắt (0) tại E. Chứng minh: AE.AD = AH.AO
c) Qua 0 kẻ OK vuông góc với EC tại K, OK cắt (0) tại I
Từ điểm A nằm ngoài đường tròn (O;R) với OA > 2R, kẻ các tiếp tuyến AB, AC của đường tròn (O) (B, C là các tiếp điểm). Vẽ đường kính BD của đường tròn (O) ; AD cắt đường tròn (O) tại E ( E khác D).
a) Chứng minh: OA ⊥ BC tại H và 4 điểm A, B, O, C cùng thuộc đường tròn.
b) Chứng minh: CD // OA và AH.AO = AE.AD
c) Gọi I là trung điểm của HA. Chứng minh ABI = BDH
cho đường tròn (O,R) và điểm A sao cho OA = 2R. Từ A , vẽ AB tiếp xúc với (O) với B là tiếp điểm. Kẻ đường kính BC của (O). Gọi M là trung điểm của đoạn thẳng OB, kẻ MN vuông góc với AC tại N.
a) chứng minh tứ giác ABMN nội tiếp.
b) kẻ BH vuông góc với OA tại H. Cho R= 3cm. Tính số đo góc BOA và độ dài đoạn BH
c) đường thẳng vuông góc với OA tại O cắt tia AB tại E. Chứng minh ba điểm E,M,N, thẳng hàng
cho điểm m nằm ngoài đường tròn (O;R).Kẻ các tiếp tuyến MA,MB với đường tròn (O) (A,B là các tiếp điểm ).Vẽ đường kính AD của đường tròn(O).Gọi H là giao điểm của MO và AB.
a/Chứng minh rằng :MO vuông góc AB tại H
b/Cho biết R = 15 cm và MO = 25 cm .Tính độ dài đoạn OH.
c/ Gọi G là giao điểm của BD và AM .Chứng minh :AM = MG.
d/ Gọi I là giao điểm của tia OM và đường tròn (O). Chứng minh I là tâm đường tròn nội tiếp tam giác MAB . Tính độ dài đoạn thẳng BD theo R ,r với r là bán kính của đường tròn nội tiếp tam giác MAB.