Cho đường tròn tâm O đường kính AB. Kẻ dây cung CD vuông góc với AB tại H( H nắm giữa A và O, H khác A và O). Lấy điểm G thuộc đoạn CH, tia AG cắt đường tròn tại E khác A
a. CM tứ giác BEGH nội tiếp
b. Gọi K là giao điểm của 2 đường thẳng BE và CD. CM: KC.KD=KE.KB
c. Đoạn thẳng AK cắt đường tròn tâm O tại F khác A. CM: G là tâm đường tròn nội tiếp tam giác HEF
d. Gọi M,N lần lượt là hình chiếu vuông góc của A và B trên đường thẳng EF. CM: HE+HF=MN
Cho đường tròn tâm O với dây AB cố định (AB không qua O) đường kính CD vuông góc với AB tại K( C thuộc cung lớn AB). Điểm N thuộc cung nhỏ AC. Nối CN cắt AB tại M, nối ND cắt AB tại E. Gọi H là trung điểm NC, kẻ HI vuông góc AN tại I.
1. Chứng minh CNEK là tứ giác nội tiếp
2. Chứng minh MN.MC=MA.MB
3. Cho N di chuyển trên cung nhỏ AC, CM IH đi qua 1 điểm cố định và I thuojc một đường tròn cố định
Cho đường tròn (O;R) với dây CD cố định .Điểm M thuộc tia đối của tia DC.Qua M kẻ hai tiếp tuyến MA,MB tới đường tròn (O;R) (A thuộc cung lớn CD) . Gọi I là trung điểm của CD , OM cắt AB tại H.Tia OI cắt AB tại K ,nối AB cắt CD tại E
a) C/m 4 điểm M,H,I,K cùng thuộc 1 đường tròn
b) C/m ME.MI=MA^2
c) Xác định vị trí của M để tam giác MAB đều
d) C/m KC là tiếp tuyến của đường tròn
Cho (O, R) đường kính AB, tiếp tuyến Ax, trên Ax lấy điểm M bất kì, kẻ dây AC vuông góc với OM a) Chứng minh MC là tiếp tuyến của (O) b) Gọi H là hình chiếu vuông góc của C lên AB. Tiếp tuyến tại B cắt tia AC tại D. Gọi I là trung điểm của CH, tia AI cắt BD tại N. Chứng minh: N là trung điểm của BD c) Chứng minh: CN là tiếp tuyến của (O)
Cho trục tọa độ xOy và 2 điểm A,B trên trục Ox (A nằm giữa O và B) điểm M nằm bất kì trên Oy . Đường tròn (T) đường kính AB cắt MA,MB lần lượt tại C,E. Tia OE cắt (T) tại F.
a) Chúng minh O,A,E,M cùng thuộc 1 đường tròn và xác định tâm
b) cm: OCFM là hình thang
c) cmr: OE.OF + BE.BM = OB2
1) Cho tg nhọn ABC (AB< AC) nội tiếp đường tròn (O). Đường cao AD, BE, CF cắt nhau tại H a) Cm: BFHD nội tiếp b) Gọi M là điểm đối xứng của H qua AC. Cm M thuộc (O) và BH.HM=2FH.CM c) Tia MD căt (O) tại N (N khác M), gọi I là giao điểm FD, AN. Cm: IF=IN
cần mỗi ý d thôi nhé
Cho hai đường tròn bằng nhau (O;R) và (O'R) cắt nhau tại A và B sao cho AB=R. Kẻ đk AC của đường tròn tâm (O). Gọi E là một điểm bất kì thuộc cung nhỏ BC. CB và EB lần lượt cắt (O') tại các điểm thứ 2 là D và F
a) CM ˆAFD=90AFD^=90 độ
b) CM AE=AF
c) Gọi P là giao điểm của CE và FD. Cm AP là đường trung trực của EF
d) Tính tỉ số AQ/AP
Cho nửa đường tròn tâm O, đường kính AB và M là một điểm tùy ý trên nửa đường tròn (M khác A, B). Lấy điểm I thuộc đoạn thẳng MB (I khác B, M). Kẻ IH vuông góc với AB (H thuộc AB). Tia AI cắt nửa đường tròn tại N. Tia AM cắt tia BN tại C
b)Gọi K là giao điểm của tia BN và tiếp tuyến tại A của nửa đường tròn (O). Khi tứ giác AICK nội tiếp được đường tròn, chứng minh MH vuông góc với MN.
c) Chứng minh rằng: IH/ IC+ IA/ IN+ IB/ IM >6
Từ điểm A nằm ngoài đường tròn tâm O vẽ hai tiếp tuyến AB, AC. Kẻ BK vuông góc với AC, BK cắt đường tròn tâm O tại M, AM cắt O tại N. Gọi H là giao điểm giữa OA và BC.
a) Chứng minh bốn điểm O, H, M, N thuộc cùng một đường tròn
b) Kẻ MI vuông góc với BC, MD vuông góc với AB. CHứng minh Tam giác MIK đồng dạng với tam giác MDI
c) Gọi E, F, G lần lượt là giao điểm BM và ID; IK và MC; EF và AB. CHứng minh BG = IF