ai giúp mình với ạ
Bài 1: Cho đường tròn (O;R) và điểm M nằm ngoài đtròn đó. Kẻ hai tiếp tuyến MA, MB với đtròn đó (A,B là các tiếp điểm) , MO cắt cung nhỏ AB tại N.
a) tính góc AON và số đo cung ANB, biết OM=2R
b) Biết góc AMB=36 độ . Tính số đo góc AOB
Câu 21.< VD> Từ điểm M nằm ngoài đường tròn (0;R) kẻ hai tiếp tuyến MA; MB. Lấy điểm I trên cung nhỏ AB kẻ tiếp tuyến với (O,R) tại I cắt MA, MB tại P,Q . Cho AMB= 60°. Khi đó số đo POQ là:
А. 60° B. 40° . С. 30°. D. 120°
có ai on k giúp em
Cho đường tròn (O), hai đường kính AB và CD vuông góc với nhau. Trên cung nhỏ BC lấy điểm M sao cho số đo cung MB bằng hai lần số đo cung MC. Gọi N là giao điểm của AM và CD a) chứng minh ∆OMN cân b) chứng minh AM.AN = AO.AB
Cho đường tròn (O; R) và dây AB = R. Trên cung lớn AB lấy điểm M. Số đo AMB là: *
50
60
90
30
150
Câu 1: Cho đường tròn (O; R), lấy B \(\in\) (O) gọi H là trung điểm của đoạn OB. Dây CD vuông góc với OB tại H. Tính số đo cung nhỏ và cung lớn CD
Câu 2: Cho tam giác ABC cân tại A. Vẽ (O) đường kính BC. Đường tròn (O) cắt AB và AC lần lượt tại M và N
a) Chứng minh các cung nhỏ BM và CN có số đo bằng nhau
b) Tính \(\widehat{MON}\), biết \(\widehat{BAC}\) = \(40^o\)
1. Cho nửa đường tròn đường kính AD. Trên nửa đường tròn kẻ các dây cung AB=BC=2√5cm. Tính bán kính của nửa đường tròn, biết CD=6cm
2. Cho △đều ABC nội tiến đường tròn (O). Lấy M nằn trên cung BC. Chứng minh rằng MB+ MC=MA
3. Cho đường tròn (O) trong đó 3 dây bằng nhau AB, AC, BD sao cho hai dây AC, BD cắt nhau tại M tạo thành góc vuông AMB. Tính số đo các cung nhỏ AB, CD
4. Cho đường tròn(O) và dây AB. Vẽ tiến tuyến xy// AB có M là tiếp điểm . chứng minh rằng △MAB là tam giác cân
Từ điểm M bên ngoài đường tròn (O) vẽ tiếp tuyến MA,MB(A,B là các tiếp điểm),MO cắt AB tại H.Kẻ đường kính AC
a.Chứng minh:MO // BC
b.MC cắt đường tròn tại D.Chứng minh MH.MO = MC.MD
c.Đường thẳng kẻ qua O vuông góc với BC cắt MB tại N.Chứng minh NC là tiếp tuyến của đường tròn (O)
d.MO cắt đường tròn tại I.Chứng minh I là tâm đường tròn nội tiếp tam giác MAB
Từ điểm M bên ngoài đường tròn (O) kẻ các tiếp tuyến MA, MB và cát tuyến MCD (A,B là các tiếp điểm).
a/ Chứng minh: \(\dfrac{AC}{AD}\)=\(\dfrac{BC}{BD}\)
b/Gọi I là giao điểm của AB và CD. Chứng minh: \(\dfrac{MC}{MD}\)=\(\dfrac{IC}{ID}\)
Cho điểm M thuộc đường tròn (O;R) đường kính AB (MB < MA). Tiếp tuyến tại M cắt
đường thẳng AB ở S.
a) Tính AMˆ B và OMˆ S.
b) Gọi MH là đường cao của tam giác AMB. Chứng minh: HO.HS = HA.HB.
c) Gọi C là đối xứng của M qua OS Chứng minh SC là tiếp tuyến của đường tròn (O;R) và
tính diện tích tam giác SMC theo R khi biết OS = 2R.