Bài 6: Tính chất hai tiếp tuyến cắt nhau

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phạm Tuấn Kiệt

Cho ( O, R ) đường kính AB . Lấy điểm C nằm trên đường tròn , tiếp tuyến tại C cắt tiếp tuyến tại B ở D và E . Chứng minh 

a) OE vuông góc với BC và tam giác ABC 

b) DE = AD + BE 

c) DÔE = 90 độ

d) BE.AD=R mũ 2

Nguyễn Hoàng Minh
7 tháng 12 2021 lúc 16:50

\(a,\) Theo tc 2 tt cắt nhau: \(BE=CE\Rightarrow E\in\text{trung trực }BC\)

Mà \(OB=OC=R\Rightarrow O\in\text{trung trực }BC\)

Do đó OE là trung trực BC

Vậy \(OE\perp BC\)

\(b,\) Theo tc 2 tt cắt nhau \(AD=CD;BE=CE\)

\(\Rightarrow AD+BE=CE+CD=DE\)

\(c,\) Ta có \(OB=OC=R\Rightarrow\Delta OBC\text{ cân tại }O\)

Mà OE là trung trực nên cũng là phân giác

\(\Rightarrow\widehat{COE}=\widehat{BOE}=\dfrac{1}{2}\widehat{BOC}\)

Tương tự \(a,\) ta được OD là trung trực AC

Mà \(OA=OC=R\Rightarrow\Delta OAC\text{ cân tại }O\)

Mà OD là trung trực nên cũng là phân giác

\(\Rightarrow\widehat{AOD}=\widehat{COD}=\dfrac{1}{2}\widehat{AOC}\)

Ta có \(\widehat{DOE}=\widehat{COE}+\widehat{DOC}=\dfrac{1}{2}\left(\widehat{AOC}+\widehat{BOC}\right)=\dfrac{1}{2}\cdot180^0=90^0\)

\(d,\) Áp dụng HTL vào tam giác DOE vuông tại O có OC là đg cao:

\(BE\cdot AD=DC\cdot CE=OC^2=R^2\)


Các câu hỏi tương tự
Hà mỹ trang
Xem chi tiết
đặng tấn sang
Xem chi tiết
Kayokea
Xem chi tiết
Johnny
Xem chi tiết
Mạnh Hùng Lê
Xem chi tiết
Cường Tô văn
Xem chi tiết
Nam Phong Nguyễn
Xem chi tiết
nguyễn cao khánh
Xem chi tiết
Quốc Huy
Xem chi tiết