35/Cho hình chữ nhật ABCD, hai đường chéo AC và BD cắt nhau tại O. Lấy E là điểm bất kì thuộc đoạn thẳng OA. Đường thẳng BE cắt AD tại M. Qua D vẽ một đường thẳng song song với BM, đường thẳng này cắt BC tại F và cắt AC tại N.
a. Chứng minh tứ giác BMDF là hình bình hành.
b. Chứng minh OBE = ODN.
c. Qua E vẽ một đường thẳng song song với BD, đường thẳng này cắt AD tại H, cắt CD kéo dài tại I. Gọi O’ là trung điểm của đoạn thẳng IH. Cm: O’O // DF
d. Gọi K là điểm đối xứng với D qua O’. Cm: K, M, B thẳng hàng.
tamgiác abc cân tại a m là trung điểm bc trên tia đối của tia ma bất kỳ lấy điểm d từ d kẻ vuông góc ab và ac ll tại e và f cm tgiac aecf là hvg b) cm ef//bc c) qua e kẻ đường vuông góc vs mf tại n cm and bằng 90 d)cm b,n,d thẳng hàng
hộ mình câu d với mng ơi kẻ hình và giải chi tiết nhé mình làm rất nhiều cách rồi nhưng toàn bị ngộ nhận thôi <3
1.Cho tứ giác ABCD có góc B=góc D = 900. Phân giác của góc A cắt BC tại E. Đường thẳng qua C song song với AE cắt AD tại F. CMR: CF là phân giác của góc BCD
2.Cho tứ giác ABCD, O là giao điểm 2 đường chéo biết OA=8, OB=4, OC=6, OD=6. Tính AD
MẤY BẠN GIÚP MÌNH BÀI NÀO CŨNG ĐƯỢC CẢM ƠN NHÌU
Cho tam giác nhọn ABC (AB < AC) có đường cao AH. Gọi I,K lần lượt là trung điểm của AB, AC và AH cắt IK tại O
a)chứng minh tứ giác BIKC là hình thang
b)vẽ M là điểm đối xứng của H qua I.Chứng minh:tứ giác AMB là hcn
c)vẽ N thuộc IK sao co O là trung điểm IN.Chứng minh:ANHI là hình thoi
d)BO cắt I tại E,AN cắt BC tại F.Tính tỉ số IE/NF
Giúp mik với mik cảm ơn ạ!!!!!
Cho tứ giác ABCD có E, F lần lượt là trung điểm AD, BC. Đường thẳng EF cắt các đường thẳng AB, CD lần lượt tại M, N. Cm: MA × NC = MB × ND
Tam giác ABC có hai trung tuyến BM và CN cắt nhau tại G. Gọi P và Q lần lượt là các trung điểm BG và CG. a) Chứng minh MNPQ là hình bình hành. b) Từ M kẻ đường thẳng song song với AB cắt BC tại I. Chứng minh A, G, I thẳng hàng. c) Cho AI = 9cm, BC = 10cm. Tính chu vi tứ giác MNPQ.
Bài 2 Cho ∆ABC cân tạiA.Gọi M là trung điểm BC. Từ điểm D thuộc BC (BD >
CD) vẽ đường vuông góc với BC cắt AC và tia BA lần lượt tại E và F.
a) Chứng minh tứ giác AMDF là hình thang vuông.
b) Gọi O là trung điểm EC, N là điểm đốixứngvới D qua O. Chứng minh tứ
giác DENC là hình chữ nhật.
c) Lấy I thuộc AB sao cho A là trung điểm IF.Chứng minh I, E, N thẳng hàng.
d) Gọi K là điểm đối xứng với N qua A.Chứng minh tứ giác BDFK là hình
chữ nhật.
Bài 1. Cho hình thang ABCD , O là giao điểm 2 đường chéo AC và BD . Chứng minh rằng : ABCD là hình thang cân nếu OA = OB
Bài 2 : Cho hình thang ABCD ( AB // CD ), AB < CD . Tia phân giác góc A và góc D cắt nhau tại E , tia phân giác góc B và góc C cắt nhau tại F.
a) Tính góc AED , góc BFC
b) Giả sử AE và BF cắt nhau tại M nằm trên cạnh CD . Chứng minh rằng AD + BC = DC
c) Với giả thiết như câu b) , Chứng minh EF nằm trên đường trung bình của hình thang ABCD
Mọi người vẽ hình hộ em nha!
Bài 31: Cho ΔABC, trung tuyến AM. Trên cạnh AC lấy hai điểm D, E sao cho AD = DE= EC. Gọi I là giao điểm của AM và BD
a) Chứng minh ME // ID
b) Chứng minh AI = IM
c) Tính DI, biết BI = 9cm.
Bài 32: Cho ΔABC, các đường trung tuyến BD và CE gặp nhau tại G. Gọi I, K lần lượt là trung điểm của BG, CG.
a) Chứng minh IK // DE và IK = DE
b*) Đường thẳng IK cắt AB, AC lần lượt tại M, N. Qua G vẽ đường thẳng // với BC cắt AB, AC lần lượt tại P, Q.
Chứng minh DE = 3MI và MI = KN, PG = GQ.
* là bài hoặc là câu khó nhé!
Bài 33: Cho ΔABC, các đường trung tuyến BD và CE. Gọi M, N lần lượt là trung điểm của BE, CD. Gọi I, K lần lượt là giao điểm của MN với BD, CE. Chứng minh:
a) MK = ED = IN\
b) MI = IK = KN
Bài 34: Cho điểm A ở ngoài đường thẳng a. Lấy các điểm M, N, P, Q thuộc đường thẳng a sao cho N nằm giữa M và P, P nằm giữa N và Q. Gọi I là trung điểm của AM. Kẻ đường thẳng b qua I và // với đường thẳng a. Chứng minh đường thẳng b đi qua trung điểm của các đoạn thẳng AN, AP, AQ.