cho đường tròn (O) bán kính R , đường thẳng d không đi qua O và cắt đường tròn tại 2 điểm A và B, từ 1 điểm C thuộc đường thẳng d, A nằm giữa B và C, vẽ tiếp tuyến CN với đường tròn , N thuộc cung lớn AB . Gọi E là trung điểm của AB
a) cm 4 điểm C,E,O,N cùng thuộc 1 đường tròn
b) cm CN2 = CA.CB
c) Gọi H là hình chiếu của N trên OC . cm \(\widehat{OAB}\)= \(\widehat{CHA}\).
Tia CO cắt đường tròn (O) tại 2 điểm D,I , I nằm giữa C và D. Cm IC.DH = DC.IH
Cho nửa đường tròn tâm O đường kính AB. Kẻ các tiếp tuyến Ax, By cùng phía với nửa đường tròn đối với AB. Lấy điểm E là 1 điểm thuộc nửa đường tròn ( E khác với A và B). Tiếp tuyến của nửa đường tròn tại E cắt Ax và By lần lượt tại C và D.
Chứng minh : CD=AC+BD, góc COD=90 độ,AC.BD
Cho đường tròn (O;R). Lấy K là 1 điểm bên ngoài đường tròn, vẽ 2 tiếp tuyến KA và KB. Gọi M là giao điểm của AB và OK, đường thẳng qua M // với KB cắt cung nhỏ AB tại C. Tia KC cắt đường tròn (O) tại D ( D khác C) , cắt AB tại I, gọi H là trung điểm của CD.
a, C/m: 5 điểm K, A, O, H, B cùng thuộc 1 đường tròn
b, C/m: Tứ giác ODAI nội tiếp
c, C/m: OM.OK + KC.KD = KO2
d, C/m: MA là phân giác của góc CMD
e, Cho R = 5cm, KO = 10cm. Tính diện tích hình viên phân giới hạn bởi dây AB và cung nhỏ AB
1. Trên (O) lấy 2 điểm B và D. A là điểm chính giữa cung BD ( có thể là cung lớn mình sợ sai đề bài ). Tia AD và AB cắt tiếp tuyến tại D ở N và tiếp tuyến tại D ở M
a, CM tg BDNM nội tiếp
b, MN//CD
c, BD2 = MA.MB
2. △ ABC cân A, cạnh đáy nhỏ < cạnh bên, nt đường tròn tâm O. Tiếp tuyến B cắt tia AC tại D, Tiếp tuyến C cắt tia AB tại E
a, Cm BD2= AD.CD
b, CM BCDE nội tiếp
3. Cho (O), lấy điểm S ở ngoài đường tròn. Vẽ 2 tiếp tuyến SA,SB. Lấy điểm M thucọc cung nhỏ AB. Kẻ MD ⊥AB , ME ⊥ SB, ME ⊥ SA.
a, CM ADMF, BDME nội tiếp
b, CM 2 tam giác MDE và MFD đồng dạng
c, Gọi I,K lần lượt là giao điểm của MA và DF , MB và DE. CM MIDK nội tiếp
CM IK// AB
Cho đường tròn (O;R) và dây cung AB, vẽ đường kính CD vuông góc với AB tại K( D thuộc cung nhỏ AB). Lấy điểm M thuộc cung nhỏ BC, DM cắt AB tại F, CM cắt AB tại E
a) Chứng minh tứ giác CKFM nội tiếp
b) DF.DM=DA2
c) \(\dfrac{FB}{EB}=\dfrac{FK}{AK}\)
Cho đường tròn tâm O .Kẻ đường kính AB và CD vuông góc với nhau . Gọi E là điểm chính giữa cung nhỏ CD .EA cắt CD tại F ;ED cắt AB tại M
a/ Các tam giác CEF và EMB là những tam giác gì ?
b/ chứng minh bốn điểm D , C, M ,B thuộc đường tròn tâm E .
Từ một điểm A ngoài đường tròn (O), kẻ các tiếp tuyến AB, AC với đường tròn ( B,C là các tiếp điểm). trên tia đối của tia BC, lấy điểm D. Gọi E là giao điểm của DO vá AC . Qua E , vẽ tiếp tuyến thứ hai với đường tròn (O), có tiếp điểm là M ; tiếp tuyến này cắt đường thẳng AB ở K.
a. Chứng minh bốn điểm D ,B, ,O, M cùng thuộc một đường tròn.
b. Chứng minh D ,B, O, M ,K cùng thuộc một đường tròn.
Cho đường tròn (O), đường kính AB cố định. Điểm I nằm giữa A và O sao cho AI = AO. Kẻ dây MN vuông góc với AB tại I. Gọi C là một điểm tùy ý thuộc cung lớn MN sao cho C không trùng với M, N và B. Nối AC cắt MN tại E.
a, C/m: Tứ giác IECB nội tiếp được trong một đường tròn. Xác định tâm đường tròn này.
b, C/m: ΔAME ∼ ΔACM