Cho đường tròn (O) đường kính AB.Trên tia tiếp tuyến của (O) tại A, lấy điểm M khác A. Đường thẳng MB cắt đường tròn (O) tại C. Qua A kẻ đường thẳng vuông góc với OM tại I, đường thẳng này cắt đường tròn (O) tại D.
a) Chứng minh MD là tiếp tuyến của (O)
b) Chứng minh ∆MAC vuông tại C .
c) Chứng minh rằng góc MCD = góc MDB
d) Tiếp tuyến với đường tròn ngoại tiếp ∆AMD tại điểm A cắt (O) ở P. E là điểm
đối xứng với A qua D. Chứng minh rằng bốn điểm A, M, E, P cùng thuộc một
đường tròn.
Mình đang cần gấp ạ , thks mn
Từ A nằm ngoài (O). Kẻ 2 tia tiếp tuyến AB,AC. BC cắt OA tại E. K trên cung nhỏ BC. Tiếp tuyến tại KC cắt AB tại P và Q. 1 đường thẳng vuông góc với OA tại O cắt AB, AC tại M và N.
a) Chứng minh: tứ giác ABOC nội tiếp
b) Chứng minh: OE. OA = R2
c) Chu vi △ APQ không đổi khi K di chuyển
d) Chứng minh: PM + PQ ≥ MN
Cho đường tròn (O), dây AB khác đường kính. Qua O kẻ đường vuông góc với AB, cắt tiếp tuyến tại A của đường tròn ở điểm C.
a) Chứng minh rằng CB là tiếp tuyến của đường tòn.
b) Vẽ đường kính BD. Chứng minh AD // OH
c) Cho bán kính của đường tròn bằng 15cm, AB=24cm. Tính độ dài
cho đường tròn (O;R) , đường kính AB . kẻ tiếp tuyến Ax với đường tròn . trên tia Ax lấy điểm K(AK>R) . Qua k kẻ tiếp tuyến KM tới đường tròn (O). đường thẳng d vuông góc với AB tại O, d cắt MB tại E.
1.chứng minh KAOM là tứ giác nội tiếp
2. OK cắt AM tại I , chứng minh OI.OK=R^2
3 . gọi H là trực tâm tam giác KMA . tìm quỹ tích điểm H khi K chuyển động trên tia Ax
Cho đường tròn (O;R) đường kính AB. Vẽ dây CD của đường tròn (O) vuông góc với OA tại trung điểm M của OA. Gọi E là trung điểm của BC.
a, C/m: O, M, C, D cùng thuộc một đường tròn
b, Tiếp tuyến tại B của đường tròn (O) cắt tia OE tại M. C/m: MC là tiếp tuyến của đường tròn (O)
c, C/m: MA2 + MB2 + MC2 + MD2 = 4R2
Cho đường tròn (O;R) đường kính AB. Vẽ dây CD của đường tròn (O) vuông góc với OA tại trung điểm M của OA. Gọi E là trung điểm của BC.
a, C/m: O, M, C, D cùng thuộc một đường tròn
b, Tiếp tuyến tại B của đường tròn (O) cắt tia OE tại M. C/m: MC là tiếp tuyến của đường tròn (O)
c, C/m: MA2 + MB2 + MC2 + MD2 = 4R2
Cho đường tròn (O;R) đường kính AB. Vẽ dây CD của đường tròn (O) vuông góc với OA tại trung điểm M của OA. Gọi E là trung điểm của BC.
a, C/m: O, M, C, E cùng thuộc một đường tròn
b, Tiếp tuyến tại B của đường tròn (O) cắt tia OE tại M. C/m: MC là tiếp tuyến của đường tròn (O)
c, C/m: MA2 + MB2 + MC2 + MD2 = 4R2