Cho đường tròn (O; R) có đường kính AB. Vẽ các tiếp tuyến Ax, By của đường tròn (O), trên đường tròn (O) lấy một điểm E bất kỳ (E ≠ A; B). Tiếp tuyến tại E của đường tròn (O) cắt Ax và By lần lượt tại C và D.
a. Chứng minh: CD=AC+BD
b. Vẽ EF ⊥ AB tại F, BE cắt AC tại K. Chứng minh: AF.AB=KE.EB
c. EF cắt CB tại I. Chứng minh ΔAFC đồng dạng với ΔBFD suy ra FE là tia phân giác của góc CFD
d. EA cắt CF tại M, EB cắt DF tại N. Chứng minh M, I, N thẳng hàng.
1. Cho nửa đường tròn tâm O đường kính AB. Vẽ các tiếp tuyến Ax, By ( Ax, By cùng thuộc nửa mặt phẳng chứa nửa đường tròn bờ AB). Gọi M là điểm bất kì thuộc nửa đường tròn. Tiếp tuyến tại M cắt Ax, By tại C và D.
a) Chứng minh đường tròn đường kính CD tiếp xúc với AB.
b) Tìm vị trí của điểm M để hình thang ABDC có chu vi nhỏ nhất.
c) Kẻ MH⊥AB tại H. Chứng minh rằng BC đi qua trung điểm I của MH.
(Chỉ cần làm câu c thôi mấy câu để có số liệu thôi)
Cho nửa đường tròn tâm (O) đường kính AB . Vẽ hai tiếp tuyến Ax , By với nửa đường tròn . M là 1 điểm bất kì trên nửa đường tròn . Qua M vẽ đường tiếp tuyến với cắt đường tròn cắt Ax , By thứ tự tại D,C Chứng minh : a) 4 điểm A,D,M,O cũng thuộc 1 đường tròn b) Đường tròn đường kính CD nhận AB là tiếp tuyến
Cho đường tròn tâm O, đường kính AB. Qua điểm C thuộc đường tròn (C khác A và B) kẻ tiếp tuyến d với đường tròn. Từ O kẻ đường thẳng vuông góc với BC cắt BC tại I và cắt tiếp tuyến d tại M.
a) chứng minh IB = IC
b) chứng minh △MBO = ΔMCO, suy ra MB là tiếp tuyến của đường tròn tâm O
c) từ A kẻ AE vuông góc với d (E thuộc d), từ C kẻ CH vuông góc với AB (H thuộc AB). chứng minh CE2 = AE.BH
cho nửa đường tròn tâm O đường kính AB lấy C trên nửa đường tròn. lấy D thuộc AB. đường thẳng D vuông góc với AB cắt BC tại F,cắt AC tại E, tiếp tuyến C của đường tròn O cắt EF tại I . chứng minh a) so sánh góc IEC và góc ICE và góc ABC ,b)tam giác IEC là tam giác cân,c)IC=IE=IF
Cho AB và CD là hai đường kính vuông góc của đường tròn (O; R). Trên tia đối của tia CO lấy điểm S, SA cắt đường tròn (O) tại M. Tiếp tuyến tại M với đường tròn (O) cắt CD tại E, BM cắt CO tại F
a, Chứng minh: EM.AM = MF.OA
b, Chứng minh: ES = EM = EF
c, Gọi I là giao điểm của đoạn thẳng SB và (O). Chứng minh A, I, F thẳng hàng
d, Cho EM = R, tính FA.SM theo R
e, Kẻ MHAB. Xác định vị trí điểm M để tam giác MHO có diện tích đạt giá trị lớn nh
Cho đường tròn tâm O có hai đường kính là AB và CD vuông góc với nhau tại O. Trên cung nhỏ BC lấy điểm M, AM cắt CD tại I. Tiếp tuyến của O tại M cắt tia AB tại N. Chứng minh rằng: AC là tiếp tuyến của đường tròn ngoại tiếp tam giác CMI.
Cho nửa đường tròn \(\left(O;R\right)\); đường kính AB. Trên cùng 1 nửa mặt phẳng bờ AB dựng tiếp tuyến Ax, By của nửa đường tròn. Lấy 1 điểm M trên nửa đường tròn O. Tiếp tuyến tại M của O cắt Ax, By lần lượt tại D và C. Tia AM và BM kéo dài cắt By, Ax lần lượt tại F và E.
a) Dựng \(MH\perp AB\). CM: \(AC;BD\) đi qua trung điểm I của MH
c) Chứng minh: \(EO\perp AC\)
cho nửa đg tròn (O;R) đường kính AB. Vẽ tiếp tuyến Ax (Ax và nửa đg tròn cùng thuộc nửa mặt phẳng bở AB ) , trên Ax lấy điểm P sao cho AP > R . Vẽ tiếp tuyến PE với nửa đg tròn (E là tiếp điểm ) đường thẳng PE giao AB tại F
a, CM : P,A,E,O cùng thc 1 đường tròn
b, CM: PO // BE
c, qua O kẻ đường thẳng vuôn góc OP cắt PE tại M : CM: EM.PF=PE.MF