Cho nửa đường tròn tâm (O) đường kính AB, tiếp tuyến Bx. Qua c trên nửa đường tròn kẻ tiếp tuyến với nửa đường tròn cắt Bx ở M, tia AC cắt Bx ở N
a) CMR: OM vuông góc vs BC
b) CMR: M là trung điểm BN
c) Kẻ CH vuông góc vs AB, AM cắt CH ở I. CMR I là trung điểm CH
Cho đường tròn tâm O có hai đường kính là AB và CD vuông góc với nhau tại O. Trên cung nhỏ BC lấy điểm M, AM cắt CD tại I. Tiếp tuyến của O tại M cắt tia AB tại N. Chứng minh rằng: AC là tiếp tuyến của đường tròn ngoại tiếp tam giác CMI.
cho nửa đường tròn tâm O đường kính AB lấy C trên nửa đường tròn. lấy D thuộc AB. đường thẳng D vuông góc với AB cắt BC tại F,cắt AC tại E, tiếp tuyến C của đường tròn O cắt EF tại I . chứng minh a) so sánh góc IEC và góc ICE và góc ABC ,b)tam giác IEC là tam giác cân,c)IC=IE=IF
Cho đường tròn tâm O đường kính AB . Gọi H là điểm nằm giữa O và B . Kẻ dây CD vuông góc với AB tại H . Trên cung nhỏ AC lấy điểm E , kẻ CK vuông góc với AE tại K . Đường thẳng DE cắt CK tại F . Chứng minh :
a, Tứ giác AHCK nội tiếp đường tròn
b, AH . AD = AD^2
c, Tam giác ACF cân
Cho nửa đường tròn kính BC. Trên nửa đường tròn lấy điểm A. Kẻ AH vuông góc với BC (H thuộc BC). Trên cung BC lấy điểm D, BD cắt AH tại I
a) Chứng minh: Tứ giác IHCD nội tiếp
b) Chứng minh: \(AB^2=BI.BD\)
c) Tâm đường tròn ngoại tiếp tam giác AID luôn nằm trên 1 đường cố định khi D thay đổi trên cung AC
Cho nửa đường tròn tâm O, đường kính AD. Trên nửa đường tròn lấy điểm B, C ( B nằm trên cung AC). Gọi AC cắt BD tại E, kẻ EF vuông góc với AD(F thuộc AD). Chứng minh:
a) AB,DC,EF đồng quy
b) Tính AB.AP+CD.CP theo R của đường tròn tâm O đường kính AD
cho đường tròn (O) đường kính AB, trên nửa đường tròn lấy điểm C kẻ CH vuông góc với AB. Trên cung CB lấy điểm D hai đường thẳng AD và CH cắt nhau tại E. Tiếp tuyến của nửa đường tròn (O) kẻ từ B cắt AD tại K, Đường tròn đường kính BK cắt BC tại F. CM EF//AB
Cho nửa đường tròn tâm O, đường kính AB. I tiếp điểm OA. Dân CD vuông góc AB tại I. K thuộc góc BC, AK cắt CD tại H.
a) CM tứ giác BIHK nội tiếp
b) CM AH.AK không phụ thuộc vị trí điểm K
c) Kẻ DN vuông góc CB, DM vuông góc AC. CM MN, AB, CD đồng quy
Cho (O), từ điểm A nằm ngoài đường tròn kẻ tiếp tuyến AB, AC với đường tròn. I là điểm thuộc cung nhỏ BC, từ I kẻ ID, IE, IF vuông góc với AB, BC, AC; IB cắt DE tại M, IC cắt EF tại N
a) Chứng minh tứ giác BEID và tứ giác CEIF nội tiếp
b) Chứng minh tam giác IDE đồng dạng với tam giác IEF
c) Chứng minh IE vuông góc với MN