Cho nửa đường tròn tâm O, đường kính AB. Hai dây AE và BD của nửa đường tròn (O) cắt nhau tại H nằm trong nửa đường tròn (O), \(AE< BD\). Đường thẳng AD và BE cắt nhau tại điểm P.
a) Chứng minh rằng tứ giác PDHE là tứ giác nội tiếp và \(PD.PA=PE.PB\).
b) Gọi I là trung điểm của PH. Chứng minh rằng IE là tiếp tuyến của nửa đường tròn (O).
c) Gọi F là tâm đường tròn ngoại tiếp tam giác PAB. Chứng minh rằng \(IE^2+OE^2=FP^2\).