Cho đường tròn tâm O, đường kính AB và S là một điểm nằm bên ngoài đường tròn. SA và SB lần lượt cắt đường tròn tại M,N. Gọi H là giao điểm của BM và AN. Chứng minh SH vuông góc với AB
Cho nửa đường tròn tâm (O) đường kính BC ,vẽ tam giác ABC nhọn(điểm A nằm ngoài nửa đường tròn ,A thuộc cùng nửa mặt phẳng với nửa đường tròn có bờ BC) ,AB và AC cắt nửa đường tròn tại D và E ,H là giao điểm của BE và CD ,F là giao điểm của BH và CDCm:a)tứ giác ADHE là tứ giác nội tiếp b) cm AE.AC=AB.AD
AI GIÚP MK VS :((
Cho đường tròn tâm O đường kính AB và S là một điểm nằm ngoài đường tròn. Vẽ đường thẳng SA và SB lần lượt cắt (O) tại điểm thứ hai M,N. Gọi H là giao điểm của AN và BM. Chứng minh rằng 1) SH ⊥ AB 2) HM . HB = HN . HA
Cho đường tòn tâm O, đường kính AB và S là một điểm nằm bên ngoài đường tòn. SA và SB lần lượt cắt đường tròn tại M, N. Gọi H là giao điểm của BM và AN. Chứng minh rằng SH vuông góc với AB.
Cho nửa đường tròn (O) đường kính AB và bán kính OC ⊥ AB. Lấy điểm M thuộc cung AC . Tiếp tuyến tại M cắt OC tại N. Chứng minh rằng MNO = 2MBA
Cho nửa đường tròn (O) đường kính Ae. Gọi B, C, D là 3 điểm trên nửa đường tròn sao cho \(\stackrel\frown{AC}=2\stackrel\frown{AB},\stackrel\frown{AD}=3\stackrel\frown{AB}\)
a, Chứng minh M là điểm chính giữa của \(\stackrel\frown{AD}và\stackrel\frown{BC}\) ( OM ⊥ AD)
b, Tứ giác ABCD là hình gì? Vì sao?
cho nửa đường tròn (O) có đường kính AB và điểm C thuộc nửa đường tròn đó (C khác A,B).Lấy điểm M thuộc dây BC(M khác B,C) .Tia AM cắt cung nhỏ BC tại điểm N,tia AC cắt BN tại điểm P.Cm:PCMN là tứ giác nội tiếp
Cho đường tròn tâm O đường kính AB, trên cùng một nửa đường tròn (O) lấy hai điểm G và E ( theo thứ tự A,G,E,D) sao cho tia EG cắt tia BA tại D. Đg thẳng vuông góc với BD tại D cắt BE tại C, đg thẳng CA cắt đg tròn (O) tại điểm thứ hai là F. Chứng minh tứ giác EADC nội tiếp
Giúp mjk vs mjk đg cần gấp ạ
cho A nằm ngoài đường tròn (O), đường kính BC. AB và AC cắt (O) thứ tự tạo M và N. Gọi I là giao điểm của BN và CM. chứng minh AI vuông góc với BC