b)tìm giá trị nguyên của x để A có giá trị nguyên
cho biểu thức T =\(1:\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}+1}{x-1}\right)\)
a) Rút gọn biểu thức T
b) Chứng minh T>3 với x\(\ne\)1 và x>0
Cho biểu thức M=\(\left(\dfrac{\sqrt{x}}{\sqrt{x}-x}-\dfrac{\sqrt{x}+2}{1-x}\right)\) với (x>0;x≠1)
a. Rút gọn biểu thức M
b. tìm tất cả các giá trị của x để biểu thức M nhận giá trị nguyên
Cho biểu thức P= \(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}-1}{x-1}\) với x ≥ 0, x ≠ 1)
a. Rút gọn P
b. CM: P < \(\dfrac{1}{3}\) với x ≥ 0, x ≠ 1
Cho biểu thức P=\(\dfrac{2\sqrt{x}+1}{x+\sqrt{x}}-\dfrac{1-\sqrt{x}}{\sqrt{x}}:1+\dfrac{2}{\sqrt{x}}\)với x nhỏ hơn 0
1.Rút gọn P
2.Tính giá trị cuả P biết x=2019 -2\(\sqrt{2018}\)
1.Cho 2 biểu thức:
A=\(\dfrac{x+3}{\sqrt{x-2}}\) và B=\(\dfrac{\sqrt{x-1}}{\sqrt{x-2}}\)+ \(\dfrac{5\sqrt{x-2}}{x-4}\) với x>0, x≠4
a.Rút gọn B b.Tìm x để M=\(\dfrac{A}{B}\) đạt giá trị nhỏ nhất
2.Cho 2 biểu thức:
A=\(\dfrac{\sqrt{x+2}}{\sqrt{x+3}}\)và B=\(\dfrac{5}{x+\sqrt{x}-6}\)+\(\dfrac{1}{\sqrt{x}-2}\)
a.Rút gọn C=A-B b.Tìm x để C=\(-3\sqrt{x}\)
A = \(\dfrac{3\sqrt{x}}{\sqrt{x}-6}\) với đkxđ : \(x\ge0\); x#1;x#36
B =\(\dfrac{x-6\sqrt{x}}{\sqrt{x}-1}\) với đkxđ : \(x\ge0\); x#1;x#36
Đặt T = \(\sqrt{AB}\). Tìm giá trị nhỏ nhất của biểu thức T
\(P=\dfrac{2\sqrt{x}-9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}+\dfrac{2\sqrt{x}+1}{\sqrt{x}-3}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}\)
a) rút gọn P
b) tìm các giá trị nguyên của x để P có giá trị nguyên
Cho biểu thức M = 2. \(\left(\dfrac{\sqrt{x}}{3+\sqrt{x}}+\dfrac{x+9}{9-x}\right):\left(\dfrac{3\sqrt{x}+1}{x-3\sqrt{x}}-\dfrac{1}{\sqrt{x}}\right)\) với x >0 và x≠ 9
a. Rút gọn M
b. Tìm x để M > -1