Cho dãy tỉ số bằng nhau \(\frac{a_1}{a_2}=\frac{a_2}{a_3}=\frac{a_3}{a_4}=...=\frac{a_{2017}}{a_{2018}}\) và \(\frac{a_1}{a_{2018}}=-5^{2017}\).
Biết \(a_2+a_3+a_4+...+a_{2018}\ne0\). Khi đó giá trị của biểu thức \(S=\frac{a_1+a_2+a_3+...+a_{2017}}{a_2+a_3+a_4+...+a_{2018}}\) là ...
Cho: \(a_1;a_2;a_3;a_4\ne0\) thỏa mãn \(\left\{{}\begin{matrix}\left(a_2\right)^2=a_1\cdot a_3\\\left(a_3\right)^2=a_2\cdot a_4\end{matrix}\right.\)
CMR: \(\frac{a_1}{a_4}=\frac{\left(a_1\right)^3+\left(a_2\right)^3+\left(a_3\right)^3}{\left(a_2\right)^3+\left(a_3\right)^3+\left(a_4\right)^3}\)
Cho 4 số khác 0 là a1 , a2 , a3 , a4 thỏa mãn \(a_2^2=a_1.a_3,a_3^2=a_2.a_4\)
Chứng minh \(\frac{a_1^3+a_2^3+a_3^3}{a_2^3+a_3^3+a_4^3}=\frac{a_1}{a_4}\)
Các bạn giúp mình nhé : Bạn Vũ Minh Tuấn , Nguyễn Việt Lâm , Nguyễn Văn Đạt , Băng Băng 2k6 và thầy Akai Haruma , Phynit và cùng với tất cả các bạn khác vào giúp mình với ạ !!!
Chứng minh rằng nếu \(\dfrac{a_{1_{ }}}{a_2}\)=\(\dfrac{a_2}{a_3}\)=\(\dfrac{a_3}{a_4}\)=......=\(\dfrac{a_{2017}}{a_{2018}}\) thì:
\(\dfrac{a_1}{a_{2018}}\)=\(\left(\dfrac{a_1+a_2+a_3+.......+a_{2017}}{a_2+a_3+a_4+.......+a_{2018}}\right)\)
Cho dãy tỉ số bằng nhau: \(\dfrac{a_1}{a_2}=\dfrac{a_2}{a_3}=\dfrac{a_3}{a_4}=...=\dfrac{a_9}{a_{10}}\)
CMR: \(\left(\dfrac{a_1+a_2+...+a_9}{a_2+a_3+..+a_{10}}\right)=\dfrac{a_1}{a_{10}}\)
Cmr nếu : \(\dfrac{a_1}{a_2}=\dfrac{a_2}{a_3}=\dfrac{a_3}{a_4}=...=\dfrac{a_{2017}}{a_{2018}}\)thì \(\dfrac{a_1}{a_{2018}}=\left(\dfrac{a_1+a_2+...+a_{2017}}{a_2+a_3+...+a_{2018}}\right)^{2017}\)
Làm = cách đặt k
Cho 4 số khác 0 là a1 , a2 , a3 , a4 thỏa mãn \(a_2^2=a_1.a_3,a_3^2=a_2a_4\)
Chứng minh \(\frac{a_1^3+a_2^3+a_3^3}{a_2^3+a_3^3+a_4^3}=\frac{a_1}{a_4}\)
Các bạn giúp mình nhé : Bạn Vũ Minh Tuấn , Nguyễn Việt Lâm , Nguyễn Văn Đạt , Băng Băng 2k6 và thầy Akai Haruma , Phynit và cùng với tất cả các bạn khác vào giúp mình với ạ !!!
Cho 2017 số nguyên dương \(a_1, a_2, a_3,..., a_{2017}\) thỏa mãn \(\dfrac{1}{a_1}+\dfrac{1}{a_2}+\dfrac{1}{a_3}+...+\dfrac{1}{a_{2017}}=1009\).Chứng minh rằng ít nhất 2 số trong 2017 số nguyên dương đã cho bằng nhau.
Cho 2008 số thỏa mãn \(a_1+a_2+...a_{2008}\ne0\) và \(\dfrac{a_1}{a_2}=\dfrac{a_2}{a_3}=....=\dfrac{a_{2007}}{a_{2008}}=\dfrac{a_{2008}}{a_1}\)
Hãy tính giá trị của biểu thức:N= \(\dfrac{a^2_1+a_2^2+...+a_{2007}^2+a^2_{2008}}{\left(a_1+a_2+...+a_{2007}+a_{2008}\right)2}\)