\(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{\left(n+1\right)^2.n-n^2\left(n+1\right)}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}=\frac{\sqrt{n}}{n}-\frac{\sqrt{n+1}}{n+1}\)
\(\Rightarrow S_n=\frac{1}{1}-\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}-\frac{\sqrt{3}}{3}+...+\frac{\sqrt{n}}{n}-\frac{\sqrt{n+1}}{n+1}=1-\frac{\sqrt{n+1}}{n+1}\)
\(\Rightarrow S\left(n\right)\) hữu tỉ khi và chỉ khi \(\frac{\sqrt{n+1}}{n+1}=\frac{1}{\sqrt{n+1}}\) hữu tỉ
\(\Leftrightarrow\sqrt{n+1}\) hữu tỉ
\(\Leftrightarrow n+1=k^2\) với \(k\in Z\) ; \(k>1\)
\(\Rightarrow n=k^2-1\) với \(k\in Z;k>1\)
Vậy với mọi n có dạng \(n=k^2-1\) sao cho k là số nguyên lớn hơn 1 thì \(S\left(n\right)\) hữu tỉ