Cho n ∈ N* và S(n) = \(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}\) . Tìm n để S(n) là 1 số hữu tỉ.
Chứng minh: \(\frac{1}{2\sqrt{2}+1\sqrt{1}}+\frac{1}{3\sqrt{3}+2\sqrt{2}}+...+\frac{1}{\left(n+1\right)\sqrt{n+1}+n\sqrt{n}}< 1-\frac{1}{\sqrt{n+1}}\)
Chứng mình rằng với mọi số nguyên dương n, ta có:
\(\frac{1}{2\sqrt{2}+1\sqrt{1}}+\frac{1}{3\sqrt{3}+2\sqrt{2}}+...+\frac{1}{\left(n+1\right)\sqrt{n+1}+n\sqrt{n}}< 1-\frac{1}{\sqrt{n+1}}\)
CMR
\(\frac{43}{44}< \frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}\)
CMR:
Với n thuộc N*
\(a)1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n}}>\sqrt{n}\\ b)\frac{1}{\sqrt{n}}>2\left(\sqrt{n-1}-\sqrt{n}\right)\)
Chứng minh rằng với mọi số n nguyên dương, ta có:
\(S=\frac{1}{2}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+...+\frac{1}{\left(n+1\right)n}< \frac{5}{2}\)
CMR : \(1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+....+\frac{1}{\sqrt{n}}>2\left(\sqrt{n+1}n-1\right)\)
Với n là số nguyên .
Tính \(Q=\frac{1}{4+\sqrt{4}}+\frac{1}{5\sqrt{2}+2\sqrt{5}}+\frac{1}{6\sqrt{3}+3\sqrt{6}}+...+\frac{1}{\left(n+3\right)\sqrt{n}+n\sqrt{n+3}}\)
tìm min p=\(\sqrt{1+\frac{1}{1^2}+\frac{1}{2^2}}+\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}+\sqrt{1+\frac{1}{3^2}+\frac{1}{4^2}}+...+\sqrt{1+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}}+\frac{101}{n+1}\)