Ta có: \(1+2+3+.......+(n-1)+n+.....+3+2+1=k^2\)
Suy ra \(2.\frac{n(n-1)}{2}+n=k^2\)
\(n(n-1)+n=k^2\)
Suy ra \(n^2=k^2\)
Suy ra \(k = n\)
Ta có: \(1+2+3+.......+(n-1)+n+.....+3+2+1=k^2\)
Suy ra \(2.\frac{n(n-1)}{2}+n=k^2\)
\(n(n-1)+n=k^2\)
Suy ra \(n^2=k^2\)
Suy ra \(k = n\)
Cho n€N sao cho
1+2+3+...........+(n-1)+n+(n-1)+........+3+2+1=k mũ 2 vậy k =?
Câu 1: Tìm k để trong 10 số tự nhiên liên tiếp : k+1;k+2;k+3;...k+10 có nhiều số ntố nhất
Câu 2:Cho \(S_n=\dfrac{1^2-1}{1}+\dfrac{2^2-1}{2^2}+\dfrac{3^2-1}{3^2}+...+\dfrac{n^2-1}{n^2}\)( n \(\in\)N và n>1)
CMR \(S_n\) không phải là số nguyên
Bài 1: CMR từ 102 số tự nhiên bất kì luôn có thể tồn tại 2 số có tổng hoặc hiệu chia hết cho 200.
Bài 2: CMR từ 10 số tự nhiên bất kì (a1, a2, a3, ... , a10) thì luôn tồn tại 4 số có tổng chia hết cho 4.
Bài 3: CMR từ 13 số tự nhiên bất kì luôn tồn tại 4 số có tổng chia hết cho 4.
Bài 1: CMR từ 102 số tự nhiên bất kì luôn có thể tồn tại 2 số có tổng hoặc hiệu chia hết cho 200.
Bài 2: CMR từ 10 số tự nhiên bất kì (a1, a2, a3, ... , a10) thì luôn tồn tại 4 số có tổng chia hết cho 4.
Bài 3: CMR từ 13 số tự nhiên bất kì luôn tồn tại 4 số có tổng chia hết cho 4.
cho S=1+2+5+14+...+3n-1+1 phần 2, khi n là 1 số nguyên dương
vậy n=...........
a)56.16 + 17.243 (mod 16)
b)67.32 + 34.944 (mod 31) c) 786.123 + 73.49 (mod 12) 2. Chứng minh rằng: 3 2n+1 + 5 chia hết cho 8 với mọi số tự nhiên n 3. Chứng minh rằng: n n−1 + n n−2 + n n−3 + ... + n 3 + n 2 + n chia hết cho n − 1 với mọi số tự nhiên n > 1 Giúp mình với ạ, cảm ơn!Cho Sn= \(\frac{1^2-1}{1}+\frac{2^2-1}{2^2}+\frac{3^2-1}{3^2}+...+\frac{n^2-1}{n^2}\)(Với n thuộc N và n>1)
CMR : Sn k là số nguyên
Chứng minh rằng:
\(3^{n+1}-2^{n+1}+\) \(3^{n-1}-2^{n-1}\) chia hết cho 10 với mọi số tự nhiên n >1
a) Tính tổng : 1+ 2 + 3 +…. + n , 1+ 3 + 5 +…. + (2n -1)
b) Tính tổng : 1.2 + 2.3 + 3.4 + …..+ n.(n+1) 1.2.3+ 2.3.4 + 3.4.5 + ….+ n(n+1)(n+2)
Với n là số tự nhiên khác 0.
Các thánh giúp em zới ko hỉu gì hết trơn T-T