Lời giải:
a)
Để $M$ có nghĩa thì \(x-3\geq 0\Leftrightarrow x\geq 3\)
b)
\(M=\sqrt{x-2-2\sqrt{x-3}}-\sqrt{x+1-4\sqrt{x-3}}\)
\(=\sqrt{(x-3)-2\sqrt{x-3}+1}-\sqrt{(x-3)-4\sqrt{x-3}+4}\)
\(=\sqrt{(\sqrt{x-3}-1)^2}-\sqrt{(\sqrt{x-3}-2)^2}\)
\(=|\sqrt{x-3}-1|-|\sqrt{x-3}-2|\)
Với \(3\leq x\leq 4\Rightarrow 0\leq \sqrt{x-3}\leq 1\)
\(\Rightarrow \sqrt{x-3}-1\leq 0; \sqrt{x-3}-2< 0\)
\(\Rightarrow M=|\sqrt{x-3}-1|-|\sqrt{x-3}-2|=(1-\sqrt{x-3})-(2-\sqrt{x-3})=-1\)
Lời giải:
a)
Để $M$ có nghĩa thì \(x-3\geq 0\Leftrightarrow x\geq 3\)
b)
\(M=\sqrt{x-2-2\sqrt{x-3}}-\sqrt{x+1-4\sqrt{x-3}}\)
\(=\sqrt{(x-3)-2\sqrt{x-3}+1}-\sqrt{(x-3)-4\sqrt{x-3}+4}\)
\(=\sqrt{(\sqrt{x-3}-1)^2}-\sqrt{(\sqrt{x-3}-2)^2}\)
\(=|\sqrt{x-3}-1|-|\sqrt{x-3}-2|\)
Với \(3\leq x\leq 4\Rightarrow 0\leq \sqrt{x-3}\leq 1\)
\(\Rightarrow \sqrt{x-3}-1\leq 0; \sqrt{x-3}-2< 0\)
\(\Rightarrow M=|\sqrt{x-3}-1|-|\sqrt{x-3}-2|=(1-\sqrt{x-3})-(2-\sqrt{x-3})=-1\)