nếu vecto 0 thì khi viết pt đường thẳng hay pt tham số nó có dạng y=a, x=b với a,b là hằng số thì sai rồi bạn
nếu vecto 0 thì khi viết pt đường thẳng hay pt tham số nó có dạng y=a, x=b với a,b là hằng số thì sai rồi bạn
trong mặt phẳng xOy cho 2 điểm A<2,3>, B<1 ,-2> và đường thẳng d x-3y +1 bằng 0
a, viết phương trình tham số của đường thẳng P1 đi qua A và nhận u <1,-5> làm vecto chỉ phương
b, viết phương trình tổng quát của đường thẳng P2 đi qua B và vuông góc với đường thẳng d
c, tính khoảng cách từ gốc O đến đường thẳng AB
trong mặt phẳng xOy cho 2 điểm A<2,3>, B<1 ,-2> và đường thẳng d x-3y +1 bằng 0
a, viết phương trình tham số của đường thẳng Δ1 đi qua A và nhận u <1,-5> làm vecto chỉ phương
b, viết phương trình tổng quát của đường thẳng Δ2 đi qua B và vuông góc với đường thẳng d
c, tính khoảng cách từ gốc O đến đường thẳng AB
trong mặt phẳng xOy cho 2 điểm A<2,3>, B<1 ,-2> và đường thẳng d x-3y +1 bằng 0
a, viết phương trình tham số của đường thẳng P1 đi qua A và nhận u <1,-5> làm vecto chỉ phương
b, viết phương trình tổng quát của đường thẳng P2 đi qua B và vuông góc với đường thẳng d
c, tính khoảng cách từ gốc O đến đường thẳng AB
Cho A(3,0); B(0,4); C(-3,-1)
1) Tìm D thuộc trục Ox để ABCD là thang
2) M thuộc trục Ox để | vecto MA + vecto MC | nhỏ nhất
3) N thuộc trục OY để | vecto NA + vecto NB + vecto NC | nhỏ nhất
4) K thuộc trục Ox để | 2 vecto KA - 3 vecto KB | nhỏ nhất
CÁC BẠN GIÚP MÌNH VỚI !!
Cho ba điểm A(-6;3) , B(0;-1), C(3;2). Điểm M trên đường thẳng D: 2x-y+3=0 mà giá trị tuyệt đối của vecto MA+vecto MB+ vecto MC nhỏ nhất?
Tam giác ABC biết A ( 2,1); B(5,2); C(-4,3)
- Tìm M sao cho: vecto CM+ 3 vecto AM= 2 vecto BM
- Tìm D thuộc trục Ox để ABCD thang đáy AB; DC
- G trọng tâm tam giác ABC. Tìm E thuộc d: y= 2x-1 để A,G,E thẳng hàng
- Tìm tâm đường tròn ngoại tiếp ABC và chân đường phân giác trong của góc A; tìm tâm đường tròn nội tiếp ABC
Phương trình tổng quát của đường thẳng đi qua điểm A(-2;1) và có vecto pháp tuyến n=(2;3)
Cho đường thẳng \(\Delta:x-2y+3=0\) và 2 điểm \(A\left(2;5\right);B\left(-4;5\right)\)
Tìm tọa độ điểm C trên đường thẳng \(\Delta\) sao cho
a. \(CA+CB\) nhỏ nhất
b . Vecto \(\overrightarrow{CA}+\overrightarrow{ }.CB\) có độ dài ngắn nhất