\(log_{\sqrt{pq}}\left(\dfrac{q}{\sqrt{p}}\right)=2log_{pq}\left(\dfrac{q}{\sqrt{p}}\right)=2log_{pq}q-2log_{pq}\sqrt{p}\)
\(=\dfrac{2}{log_qpq}-log_{pq}p=\dfrac{2}{log_qp+log_qq}-\dfrac{1}{log_ppq}=\dfrac{2}{\dfrac{1}{\sqrt{5}}+1}-\dfrac{1}{log_pp+log_pq}\)
\(=\dfrac{2}{\dfrac{1}{\sqrt{5}}+1}-\dfrac{1}{1+\sqrt{5}}=\dfrac{11-3\sqrt{5}}{4}\)