Lời giải:
Ta có:
\((x+\sqrt{x^2+2007})(y+\sqrt{y^2+2007})=2007\)
Nhân \(x-\sqrt{x^2+2007}\) vào 2 vế:
\(\Rightarrow (x-\sqrt{x^2+2007})(x+\sqrt{x^2+2007})(y+\sqrt{y^2+2007})=2007(x-\sqrt{x^2+2007})\)
\(\Leftrightarrow [x^2-(x^2+2007)](y+\sqrt{y^2+2007})=2007(x-\sqrt{x^2+2007})\)
\(\Leftrightarrow -2007(y+\sqrt{y^2+2007})=2007(x-\sqrt{x^2+2007})\)
\(\Leftrightarrow -(y+\sqrt{y^2+2007})=x-\sqrt{x^2+2007}\)
\(\Leftrightarrow x+y+\sqrt{y^2+2007}-\sqrt{x^2+2007}=0(1)\)
Hoàn toàn tương tự, nhân \(y-\sqrt{y^2+2007}\) vào 2 vế:
\(x+y+\sqrt{x^2+2007}-\sqrt{y^2+2007}=0(2)\)
Từ (1);(2) suy ra: \(2(x+y)=0+0=0\Rightarrow S=x+y=0\)