Bài 3 cho parabol (P)\(y=x^2\) và đt (d) y =(2-m)x +m-3
a,CM : (d) và (P) luôn có điểm chung
b, Tìm m để (d) cắt (P) tại 2 điểm phân biệt có hoành độ \(x_1,x_2\) sao cho \(\left|x_1\right|+x^2_2=2\)
Bài 2 Cho parabol (P) \(y=x^2\) và đt (d) \(y=2\left(m+1\right)x-m+4\)
a, Tìm tọa độ gđ của (P) VÀ (d) khi m = -5
b, Tìm m để (d) cắt (P) tại 2 điểm có hoành độ\(x_1,x_2\) sao cho \(A=|x_1-x_2|\) đạt GTNN và tìm GTNN đó
Cho (P): y=\(x^2\)
(d): y= \(2x-m+3\)
Tìm giá trị của m để (P) và (d) cắt nhau tại hai điểm phân biệt toạ độ \(\left(x_1;y_1\right);\left(x_2;y_2\right)\) thoả mãn điều kiện \(x_1x_2\left(y_1+y_2\right)=-6\)
cho phương trình \(x^2-6\left(m-1\right)x+9\left(m-3\right)=0\left(1\right)\)
a, giải phương trình (1) khi m=2
b, tìm các giá trị của m để phương trình (1) có 2 nghiệm phân biệt thoả mãn \(x_1+x_2=2x_1.x_2\)
Cho hệ phương trình: \(\left\{{}\begin{matrix}x^3y^2-2x^2y-x^2y^2+2xy+3x-3=0\\y^2+x^{2017}=y+3m\end{matrix}\right.\). Tìm các giá trị của \(m\) để hệ phương trình có hai nghiệm phân biệt \(\left(x_1;y_1\right)\) và \(\left(x_2;y_2\right)\) thoả mãn điều kiện \(\left(x_1+y_2\right)\left(x_2+y_1\right)+3=0\).
Bài 1 cho parabol (P) \(y=x^2\) và đ/t (d) \(y=-mx+2\)
Tìm m để (d) cắt (P) tại 2 điểm phân biệt có hoành độ \(x_1,x_2\) sao cho\(x_1^2x_2+x_1x_2^2=2020\)
Bài 1 Cho parabol (P) và đt (d) y= -2x +1 -m
a, Tìm tọa độ gđ của (P) VÀ (d) khi m = -2
b, Tìm m để (d) cắt (P) tại 2 điểm có hoành độ \(x_1,x_2\) thỏa mãn \(x^2_1+x_2^2=x_1.x_2+8\)
Cho parabol (P): \(y=-\frac{1}{2}x^2\) và đường thẳng (d) đi qua điểm M (1;-2) và nhận k làm hệ số góc.
a, CMR: (d) luôn cắt (P) tại hai điểm phân biệt với mọt giá trị của k.
b, Tìm k để (d) cắt (P) tại hai điểm phân biệt có hoành độ x\(_{1,}x_2\)thỏa mãn \(x_1^2+x^2_2-2x_1x_2.\left(x_1+x_2\right)=16\)
Trong mặt phẳng tọa độ Oxy, cho parabol (P) có phương trình y = x ^ 2 và đường thẳng (d) có phương trình (d) v = 2x + m ^ 2 - 2m (với m là tham số)
Xác định tất cả các giá trị của m để (d) cắt (P) tại hai điểm phân biệt có hoành độ lần lượt là x1, và x2, thỏa mãn điều kiện x1 ^ 2 + 2x2 = 3m