Lời giải:
$M$ là điểm chính giữa cung $AB$ nên $MA=MB(1)$
Mà: $OA=OB(=R)(2)$
Từ $(1);(2)\Rightarrow OM$ là trung trực của $AB$
Lời giải:
$M$ là điểm chính giữa cung $AB$ nên $MA=MB(1)$
Mà: $OA=OB(=R)(2)$
Từ $(1);(2)\Rightarrow OM$ là trung trực của $AB$
Cho \(\left(O\right)\) và một dây AB. Kẻ bán kính \(OM\perp AB\)
Chứng minh M là điểm chính giữa \(\stackrel\frown{AB}\)
Cho ∆ABC nhọn (AB < AC). Đường tròn tâm O đường kính BC cắt AB, AC tại M và N. Gọi H là giao điểm của BN và CM.
a) Chứng minh AH ^ BC tại D.
b) Gọi S là trung điểm AH. Chứng minh SN là tiếp tuyến của đường tròn (O).
c) Chứng minh OM là tiếp tuyến của đường tròn ngoại tiếp ∆AMN.
Trên nửa đường tròn tâm O đường kính AB ; lấy 2 điểm M,N sao cho \(\stackrel\frown{AB}=\stackrel\frown{MN}=\stackrel\frown{NB}\) . Gọi P là giao điểm của AM và BN , H là giao điểm của AN và BM .Cmr :
a, Tứ giác AMNB là hình thang cân
b, 4 điểm P,M,N,H cùng thuộc 1 đường tròn
c, \(PH\perp AB\)
d, ON là tiếp tuyến của đường tròn đường kính PH
Cho đường tròn(O).2 dây AB và CD song song.chứng minh:\(\stackrel\frown{AC}\)=\(\stackrel\frown{BD}\)
Từ điểm A nằm ngoài (O) kẻ các tiếp tuyến AB và AC với đường tròn. Gọi CD là dây cung của (O) song song với AB. E là giao điểm của AD với đường tròn. M là giao điểm của CE và AB. Chứng minh: M là trung điểm của AB
Cho đường tròn (O) đường kính AC, điểm B nằm giữa hai điểm O và C. Vẽ đường tròn tâm O’ đường kính BC. Gọi M là trung điểm của đoạn thẳng AB. Từ M vẽ dây cung DE của đường tròn (O) vuông góc với AB; DC cắt đường tròn tâm O’ tại I. Chứng minh:
1. Tứ giác ADBE là hình thoi.
2. Tứ giác DMBI nội tiếp đường tròn (4 điểm D, M, B, I nằm trên cùng một đường tròn).
3. MC.DB = MI.DC.
4. MI là tiếp tuyến của đường tròn (O’).
Cho đường tròn (O) đường kính AC, điểm B nằm giữa hai điểm O và C. Vẽ đường tròn tâm O’ đường kính BC. Gọi M là trung điểm của đoạn thẳng AB. Từ M vẽ dây cung DE của đường tròn (O) vuông góc với AB; DC cắt đường tròn tâm O’ tại I. Chứng minh:
1. Tứ giác ADBE là hình thoi.
2. Tứ giác DMBI nội tiếp đường tròn (4 điểm D, M, B, I nằm trên cùng một đường tròn).
3. MC.DB = MI.DC.
4. MI là tiếp tuyến của đường tròn (O’).
Cho nửa \(\left(O\right)\) đường kính AB. Lấy điểm C trên đoạn thẳng AO (\(C\ne A;C\ne O\)). Đường thẳng đi qua C vuông góc với AB cắt nửa đường tròn tại K. Gọi M là điểm bất kì trên \(\stackrel\frown{MB}\) \(\left(M\ne K,B\right)\). CK cắt AM, BM lần lượt tại H và D.
Chứng minh: \(CK^2=CH\cdot CD\)
Cho đường tròn (O) và dây AB không là đường kính, C là một điểm trên AB, D là 1 điểm trên cung nhỏ AB của (O), OD cắt AB tại E. đường thẳng OC cắt \(\left(O^,\right)\)ngoại tiếp tam giác OAB tại F, EF cắt \(\left(O^,\right)\)tại G, GD cắt\(\left(O^,\right)\)tại H. Chứng minh:
1) tam giác OCD đồng dạng tam giác ODF từ đó suy ra góc CFD= góc CDO
2)Gọi S là trung điểm của CD. Chứng minh 3 điểm O,H,S thẳng hàng