Vì OM ⊥ AB nên
AM = MB hay M là điểm chính giữa của AB(liên hệ giữa dây và đường kính)
Vì OM ⊥ AB nên
AM = MB hay M là điểm chính giữa của AB(liên hệ giữa dây và đường kính)
Cho \(\left(O\right)\) và một dây AB. M là điểm chính giữa \(\stackrel\frown{AB}\)
Chứng minh OM là trung trực của AB
Cho ΔABC(AB>AC) trên AB lấy D sao cho AD=AC.Dựng đường tròn ngoại tiếp ΔDBC.Kẻ OH⊥BC,OK⊥BD
Chứng minh:OH<OK; \(\stackrel\frown{BD}< \stackrel\frown{BC}\)
Cho \(\Delta\)ABC nội tiếp (O). M thuộc \(\stackrel\frown{BC}\) không chứa A. Kẻ MH và MI lần lượt vuông góc với AB và BC. HI cắt AC tại K
a) Chứng minh rằng 4 điểm B, H, I, M cùng thuộc một đường tròn.
b) Chứng minh rằng \(MK\perp AC\)
Trên nửa đường tròn tâm O đường kính AB ; lấy 2 điểm M,N sao cho \(\stackrel\frown{AB}=\stackrel\frown{MN}=\stackrel\frown{NB}\) . Gọi P là giao điểm của AM và BN , H là giao điểm của AN và BM .Cmr :
a, Tứ giác AMNB là hình thang cân
b, 4 điểm P,M,N,H cùng thuộc 1 đường tròn
c, \(PH\perp AB\)
d, ON là tiếp tuyến của đường tròn đường kính PH
Cho (O) và dây cung AB. Trên tia AB lấy điểm C nằm ngoài đường tròn. Từ điểm chính giữa P của cung lớn AB kẻ đường kính PQ cắt dây AB tại D. Tia CP cắt đường tròn tại điểm thứ 2 là I. Các dây AB và QI cắt nhau tại K. Cho A, B, C là 3 điểm cố định. CMR: Khi O thay đổi nhưng vẫn đi qua A, B thì đường thẳng QI luôn đi qua 1 điểm cố định
Cho đường tròn O bán kính R, M ở trong O, kẻ dây AB và CD vuông góc với nhau tại M . Chứng minh : Đường cao MN của tam giác AMD đi qua trung điểm I của BC
Cho tam giác ABC trên tia đối tia AB lấy D sao cho. AD=AC.Dựng đường tròn (O) ngoại tiếp ΔDBC.Kẻ OH⊥BC và OK⊥BD.Chứng kinh OH>OK và \(\stackrel\frown{BD}>\stackrel\frown{BC}\)
Cho đường tròn (O) và dây AB không là đường kính, C là một điểm trên AB, D là 1 điểm trên cung nhỏ AB của (O), OD cắt AB tại E. đường thẳng OC cắt \(\left(O^,\right)\)ngoại tiếp tam giác OAB tại F, EF cắt \(\left(O^,\right)\)tại G, GD cắt\(\left(O^,\right)\)tại H. Chứng minh:
1) tam giác OCD đồng dạng tam giác ODF từ đó suy ra góc CFD= góc CDO
2)Gọi S là trung điểm của CD. Chứng minh 3 điểm O,H,S thẳng hàng
cho đường tròn tâm o bán kính và m là một điểm nằm bên ngoài đường tròn . từ m kẻ hai tiếp tuyến từ ma,mb với đường tròn r (o) (a b là các tiếp điểm gọi e là giao điểm của ab và om