Áp dụng BĐT Bunhiacopxki , ta có :
\(\left(a^2+b^2\right)\left(x^2+y^2\right)\) ≥ \(\left(ax+by\right)^2\)
\("="\) ⇔ \(\dfrac{a}{x}=\dfrac{b}{y}\)
Vậy , \(\left(a^2+b^2\right)\left(x^2+y^2\right)=\)\(\left(ax+by\right)^2\) thì \(\dfrac{a}{x}=\dfrac{b}{y}\)