Câu 1: hàm số \(y=\sqrt{2}\).Chọn kết luận đúng
A. Đths không cắt trục Ox
B. Đths đi qua điểm \((1;\sqrt{2})\)
C. Hs đồng biến trên toàn trục số
D. Hs nghịch biến trên\((-\infty;0) \)
Câu 2: Cho pt \(y=|x|+2x\). Chọn kết luận đúng
A.Đths đi qua điểm\((1;2)\)
B.Đths không cắt trục Ox
C.Hs nghịch biến trên\((-\infty;0) \)
D.Hs đồng biến trên toàn trục số
Câu 3: Cho 1 tam giác vuông với độ dài các cạnh được tính theo đơn vị là cm. Nếu tăng các cạnh góc vuông lên 2cm và 3cm thì S tam giác ban đầu tăng lên 50\(cm^2\) . Nếu giảm cả hai cạnh góc vuông đi 2cm thì S tam giác ban đầu giảm đi 32\(cm^2\). Tích hai cạnh góc vuông của tam giác ban đầu là
A. 208\(cm^2\) B.36\(cm^2\) C.32\(cm^2\) D.34\(cm^2\)
Câu 4: Cho hình vuông ABCD có độ dài cạnh bằng a. Hai điểm M và N lần lượt là trung điểm của BC và CD. Tích vô hướng \(\overrightarrow{AM}.\overrightarrow{AN}\)=?
Câu 5: Đths \(y=-x+2m+1\) tạo với các trục tọa độ 1 tam giác có S=18. Tính giá trị của m
Câu 6: Phương trình bậc hai \(ax^2+bx+c=0\) có hai nghiệm âm phân biệt \(x_1,x_2\). Khi đó mệnh đề nào sau đây sai?
A. Parabol \(y=ax^2+bx+c\) cắt trục hoành tại hai điểm phân biệt
B. Phương trình \(cx^2+bx+a=0\) có hai nghiệm phân biệt \(\frac{1}{x_1}, \frac{1}{x_2}\)
C. Đỉnh của parabol \(y=ax^2+bx+c\) nằm ở phía bên phải trục tung
D. Biểu thức \(ax^2+bx+c\) có thể viết dưới dạng \(a(x-x_1)(x-x_2)\)
1)Cho tam giác ABC có trung tuyến AM.Gọi I là trung điểm của AM và N là điểm nằm trên cạnh AC sao cho AN=kAC,biết k=a/b là ps tối giản để ba điểm B,I,N thẳng hàng.Giá trị của a+2b
2)Tìm tát cả các giá trị của tham số m để phương trình 3|x+1|=x^2+x-4m+1 có 4no pb
3)Cho hs y=x^2-3mx+3m-1.Tìm m để đths cắt trục hoành tại 2 điểm pb có hoành độ x1 x2 tm |x1|+|x2|=6
Cho hàm số f(x)=x^2-4x-1 . Tìm số giá trị nguyên của tham số m để pt f(/x/)-m=0 có đúng 4 nghiệm phân biệt
Câu 1:
Điểm nào sau đây thuộc đồ thị của hàm số y=\(-\frac{1}{3}x\):với
A,(1;0) ; B,(-1;2) ; C,(3;-1) ; D;(1;\(\frac{1}{3})\)
Câu 2:
Biết 2 đại lượng x và y tỉ lệ thuận và khi x=6 thì y=4
a,Tìm hệ số tỉ lệ k của y đối với x
b, Hãy biểu diễn y theo x c, Tính giá trị của y khi x=10
Câu 3:
Biết 2 đại lượng x và y tỉ lệ nghịch và khi x=8 thì y=15
a, Tìm hệ số tỉ lệ
b,Hãy biểu diễn y theo x c,Tính giá trị của y khi x=10
Câu 4:Vẽ trên cùng 1 hệ trục tọa độ đồ thị hàm số y=-2x và y=x
cho hàm số y=x2-2(m+1/m)x+m (m>0) xác định trên [-1;1] . giá trị lớn nhất , giá trị nhỏ nhất của hàm số trên [-1;1] lần lượt là y1 ; y2 thoản mãn y1-y2=8
Câu 1: Tìm tất cả các giá trị cuả tham số m để phương trình \(4\sqrt{x^2-4x+5} =x^2-4x+2m-1\) có 4 nghiệm phân biệt
Câu 2: Tìm các giá trị của tham số m sao cho tổng các bình phương hai nghiệm của phương trình \((m-3)x^2+2x-4=0\) bằng 4
Câu 3: Cho tam giác ABC có \(BC=a, AC=b, AB=c\) và I là tâm đường tròn nội tiếp tam giác. Chứng minh rằng: \(a\overrightarrow{IA}+b\overrightarrow{IB}+c\overrightarrow{IC}=\overrightarrow{0}\)
Câu 4: Cho tam giác ABC. Gọi D,I lần lượt là các điểm xác định bởi \(3\overrightarrow{BD}-\overrightarrow{BC}=\overrightarrow{0}\) và \(\overrightarrow{IA}+\overrightarrow{ID}=\overrightarrow{0}\). Gọi M là điểm thỏa mãn \(\overrightarrow{AM}=x\overrightarrow{AC}\) (x∈R)
a) Biểu thị \(\overrightarrow{BI}\) theo \(\overrightarrow{BA}\) và \(\overrightarrow{BC}\)
b) Tìm x để ba điểm B,I,M thẳng hàng
Cho hàm số y =\(\dfrac{2x-1}{x+2}\) (C) và đường thẳng d : y = mx - 2 . tìm m để (C) cắt d tại hai điểm phân biệt A , B sao cho I ( 2 ;0 ) là trung điểm của AB
Tìm các giá trị của a và b để các hệ phương trình sau có vô số nghiệm ?
a) \(\left\{{}\begin{matrix}3x+ay=5\\2x+y=b\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}ax+2y=a\\3x-4y=b+1\end{matrix}\right.\)
1) Cho A(1;-5). Viết pt tổng quát của đƣờng thẳng biết:
a) đi qua điểm A và có VTPT
n (2; 3).
b) đi qua điểm A và có hệ số góc k=4.
c) đi qua điểm A và song song d: x-3y+3=0.
d) đi qua điểm A và vuông góc trục tung.