1.tìm m để hs y=\(\left(m-1\right)x^4-2\left(m-3\right)x^2+1\) không có cực đại
2. có bn số nguyên m để hs y=\(x^3+mx-\dfrac{1}{5x^2}\) đồng biến trên \(\left(0;+\infty\right)\)
3. có bn số nguyên m để hs y=\(\dfrac{mx-4}{x-m}\) tăng trên \(\left(0;+\infty\right)\)
1. có bn số nguyên m để y=\(\dfrac{mx+3}{3x+m}\) giảm trên \(\left(0;+\infty\right)\)
2. tìm m đẻ hs y=\(-x^3-6x^2+\left(4m-9\right)x+4\) giảm trên \(\left(-\infty;-1\right)\)
3. tìm m để y=\(x^3-mx^2+x+1\) tăng trên \(\left(0;+\infty\right)\)
Tìm m để hàm số :
a) \(y=x^3+\left(m+3\right)x^2+mx-2\) đạt cực tiểu tại \(x=1\)
b) \(y=-\dfrac{1}{3}\left(m^2+6m\right)x^3-2mx^2+3x+1\) đạt cực đại \(x=-1\)
cho hs y=\(x^3+\left(m+3\right)x^2-2-m=0\) (1)
m? để (1) cắt Ox tại 3 điểm pb
Cho hàm số : y = \(\frac{1}{3}x^3-mx^2-x+m+\frac{2}{3}\)
1. Khảo sát sự biến thiên và vẽ đồ thị hàm số ứng với m=0
2. Với giá trị nào của m thì đồ thị HS trên cắt trục hoành tại 3 điểm phân biệt có hoành độ \(x_1;x_2;x_3\) thỏa mãn điều kiện: \(x_1^2+x^2_2+x_3^2>15\)
Tìm m để hàm số :
a) \(y=x^4+\left(m^2-4\right)x^2+5\) có 3 cực trị
b) \(y=\left(m-1\right)x^4-mx^2+3\) có đúng một cực trị
Cho hàm số \(y=x^3+(m+3)x^2+1−m\) (\(m\) là tham số) có đồ thị là \((C_m)\)
a) Xác định \(m\) để hàm số có điểm cực đại là \(x=-1\)
b) Xác định \(m\) để đồ thị \((C_m)\) cắt trục hoành tại \(x=-2\)
Tìm m để hàm số :
\(y=\dfrac{1}{3}mx^3+mx^2+2\left(m-1\right)x-2\)
không có cực trị
cho hàm số \(y=\frac{-x+m}{x+2}\) (c)
a.khảo sát sự biến thiên và vẽ đồ thị hàm số khi m=1
b.tìm số thực dương m để đường thẳng (d):2x+2y-1=0 cắt (c) tại hai điểm A và B sao cho tam giác OAB có diện tích bằng 1 trong đó O là gốc tọa độ .