cho hàm số \(y=4x^3-6x^2+mx\) (1),với m là tham số thực.
a.khảo sát sự biến thiên và vẽ đồ thị hàm số (1) khi m =0
b.tìm m để đồ thị hàm số (1) có hai điểm cực trị đối xứng nhau qua đường thẳng \(2x-4y-5=0\)
cho hàm số \(y=-x^4+2x^2+3\) (c)
a.khảo sát và vẽ đồ thị hàm số (c)
b.tìm m để phương trình \(x^4-2x^2+m=0\) có 4 nghiệm phân biệt
c.viết phương trình tiếp tuyến của đồ thị hàm số tại điểm có hoành độ x=2.
Cho hàm số :
\(y=\dfrac{2x+1}{2x-1}\)
a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho
b) Xác định tọa độ giao điểm của đồ thị (C) với đường thẳng \(y=x+2\)
Cho hàm số :
\(y=x^3-\left(m+4\right)x^2-4x+m\) (1)
a) Tìm các điểm mà đồ thị của hàm số (1) đi qua với mọi giá trị của m
b) Chứng minh rằng với mọi giá trị của m, đồ thị của hàm số (1) luôn luôn có cực trị
c) Khảo sát sự biến thiên và vẽ đồ thị (C) của (1) khi m = 0
d) Xác định k để (C) cắt đường thẳng \(y=kx\) tại 3 điểm phân biệt
Cho hàm số \(y=\dfrac{1}{4}x^4+\dfrac{1}{2}x^2+m\)
a) Với giá trị nào của tham số \(m\), đồ thị của hàm số đi qua điểm (-1 ; 1)
b) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số khi \(m=1\)
c) Viết phương trình tiếp tuyến của (C) tại điểm có tung độ bằng \(\dfrac{7}{4}\)
Cho hàm số \(y=2x^4-4x^2\)
a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1) ?
b) Với giá trị nào của m, phương trình \(x^2\left|x^2-2\right|=m\) có đúng 6 nghiệm thực phân biệt ?
Cho hàm số \(y=-x^3+3x-2\) (C)
a) Khảo sát và vẽ đồ thị hàm số
b) Tìm m để phương trình: \(x^3-3x+2m+1=0\) có 3 nghiệm phân biệt
c) Viết phương trình tiếp tuyến với (C) tại điểm có hoành độ \(x=0\)
Cho hàm số y=\(\frac{x+3}{x+1}\) (C).
a, Khảo sát và vẽ đồ thị hàm số (C).
b, Biết đường thẳng d: y= 2x-3 cắt (C) tại 2 điểm phân biệt A và B. Tính độ dài AB và diện tích tam giác OAB.
c, Cm đường thẳng đen ta: y= 2x+m luôn cắt (C) tại 2 điểm phân biệt M và N.
Cho hàm số \(y=\dfrac{1}{4}x^3-\dfrac{3}{2}x^2+5\)
a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho
b) Tìm các giá trị của tham số m để phương trình \(x^3-6x^2+m=0\) có 3 nghiệm phân biệt