Cho tam giác ABC vuông tại A có AB= 16cm ;AC =12cm, đường cao AH. Trên tia đối của tia CB lấy điểm E. Vẽ HN vuông góc với AE tại N. a) Tính BC; AH;HB và số đo góc B b) Chứng minh AN.AE = HB .HC c) Vẽ HM vuông góc với AB tại M. Chứng minh :AE = 3 AM biết rằng BE =3 MN
Cho \(\Delta ABC\) vuông tại B có \(\widehat{C}=60^0\),AC = 6 cm
a) Trên tia đối của tia CB lấy điểm N sao cho CN = AC. C/m \(\dfrac{CB}{CN}=\dfrac{AB}{AN}\)
b) Đường thẳng song song với đường phân giác của \(\widehat{ACN}\) kẻ từ B cắt AN tại H. C/m \(\dfrac{1}{BH^2}=\dfrac{1}{AB^2}+\dfrac{1}{BN^2}\)
Cho hình vuông ABCD và điểm E tùy ý trên cạnh BC. Tia Ax vuông góc với AE tại A, cắt tia CD tại F.
a) Chứng minh tam giác AEF cân.
b) Kẻ đường trung tuyến AI của tam giác AEF . Tia AI cắt cạnh CD tại K. Chứng minh tam giác AKF đồng dạng với tam giác CAF.
c) Cho AB = 4 cm, \(BE=\dfrac{3}{4}BC\). Tính diện tích của tam giác AEF.
d) Gọi J là giao điểm của tia AE và tia DC. Chứng minh rằng tổng \(\dfrac{1}{AE^2}+\dfrac{1}{AJ^2}\) không đổi khi E di động trên cạnh BC.
Cho tam giác ABC vuông tại A, có đường cao AH, gọi M là trung điểm BC, có AH = 10 cm, BH = 5 cm.
a) Tính độ dài HC, AM.
b) Tính số đo góc HAM, góc AMC. (số đo góc làm tròn đến độ)
c) Gọi I là trung điểm AH, trên tia đối của tia IB lấy điểm E sao cho ME = MB, trên tia đối của tia IC lấy điểm F sao cho MF = MC. Gọi K là giao điểm của BF và CE. Chứng minh EF = 3/2.AH.Sin góc BKC
Cho ∆DEF vuông tại D, đường cao DH. Biết EH=9 cm, HF=16 cm
a. Tính DH, DE, DF, góc F
b. Trên tia đối của tia DE lấy điểm I sao cho góc DFI = 30° (Vẽ đúng số đo). Tính DI, IF
c. Vẽ DK là phân giác góc HDK (K thuộc EF) M là hình chiếu của F lên DK. Chứng minh: 1/FM^2 = 1/FD^2 + 1/FK^2
Giúp mình câu c với ạ, lm hoài mà ko ra 😭😭😭😭😭
Hình vuông ABCD, E thuộc BC. Tia AE cắt đường thẳng CD tại N, vẽ đoạn AM vuông góc AE và AM=AE, (E và M thuộc 2 nửa mặt phẳng đối nhau bờ AD).
a) Chứng minh: C, D, M thẳng hàng.
b) Chứng minh: 1/AD² =1/AE² + 1/AN²
c) Cho AB=10cm, DM/DN=1/4. Tính tỉ số AM/AN và tích AM×AN
Cho tam giác ABC vuông tại A có \(\widehat{B}\) = \(60^0\), BC = 6cm.
a) Tính AB, AC (kết quả làm tròn đến chữ số thập phân thứ nhất)
b) Kẻ đường cao AH của tam giác ABC. Tính HB, HC
c) Trên tia đối của tia BA lấy điểm D sao cho DB = BC. Chứng minh: \(\dfrac{AB}{BD}=\dfrac{AC}{CD}\)
Cho tam giác MNP vuông tại P đường cao PH. Trên tia đối của HP lấy Q sao cho HQ>HP. Gọi K là hình chiếu của N trên MQ. phân giác của MNP cắt PH tại E và PM tại F. cminh PE/PH=FM/MP Cảm ơn ạa
vẽ tam giác abc vuông tại a (ab<ac) có ah là đường cao. trên tia đối của tia ah, vẽ điểm k sao cho a là trung điểm của hk
a) Gỉa sử AH= 12cm và HC= 16cm. Tính số đo góc C (làm tròn đến phút)
b) Vẽ BD vuông góc với KC và cắt KH tại M. Chứng minh KH=4MH