Giải
Xét \(\Delta\)ABM và \(\Delta\)ADN có:
AB = AD (tính chất hình vuông)
góc BAM = góc DAN (cùng phụ góc MAD)
góc ABM = góc ADN = 900 (tính chất hình vuông)
=> \(\Delta\)ABM = \(\Delta\)ADN (g.c.g)
Vậy AM = AN (2 cạnh tương ứng)
Giải
Xét \(\Delta\)ABM và \(\Delta\)ADN có:
AB = AD (tính chất hình vuông)
góc BAM = góc DAN (cùng phụ góc MAD)
góc ABM = góc ADN = 900 (tính chất hình vuông)
=> \(\Delta\)ABM = \(\Delta\)ADN (g.c.g)
Vậy AM = AN (2 cạnh tương ứng)
Cho hình vuông ABCD có 2 đường chéo AC và BD cắt nhau tại O. Qua O vẽ 2 đường thẳng MQ và SR vuông góc vs nhau là lượt cắt AB, CD tại M, Q ; cắt BC, AD tại R và S
a) Chứng minh: góc MOA = góc ROB
b) Chứng minh: AM = BR = CQ = DS
c) Chứng minh: MRQS là hình vuông
Cho hình vuông ABCD có 2 đường chéo AC và BD cắt nhau tại O. Qua O vẽ 2 đường thẳng MQ và SR vuông góc vs nhau là lượt cắt AB, CD tại M, Q ; cắt BC, AD tại R và S
a) Chứng minh: góc MOA = góc ROB
b) Chứng minh: AM = BR = CQ = DS
c) Chứng minh: MRQS là hình vuông
giúp mk nha!!
Cho hình vuông ABCD. Trên các cạnh AB, BC, CD, DA lấy các điểm M, N, H, K sao cho AM= BN = CH = DK.
a) Chứng minh: tam giác AMK= tam giác BNM = tam giác CHN
b) Chứng minh: MN vuông góc MK
c) C/M : MNHK là hình vuông
d) C/M: MN, KN, AC, DB đồng quy
Cho hình chữ nhật ABCD. Gọi O là giao điểm cảu hai đường chéo. Một đường thẳng qa 0 cắt AD tại M, cắt BC tại N
a) Chứng minh AM=CN
b) Gọi I là trung điểm đối xứng với O qua AD. Tứ giác AODI là hình gì? Vì sao?
c) Qua M vẽ ME vuông góc BD, qua N vẽ NF vuông góc BD. Tứ giác MENF là hình gì? chứng minh?
(các bạn làm nhanh giúp mình nha, mình cần gấp) Thanks
cho hình vuông ABCD có cạnh bằng a. Trên cạnh BC lấy điểm E, qua A kẻ kẻ đường thẳng vuông góc với AE, đường thẳng này cắt đường thẳng CD tại EF. Gọi I là trung điểm của EF, AI cắt CD tại K
1/ cHỨNG MINH: A/ tam giác AEF là tam giác vuông cân và KE=KF
b/ Ba điểm D, I, B thẳng hàng
2/ Trên cạnh AB lấy điểm M sao cho BE=BM. Tìm vị trí ủa điểm E trên cạnh BC để diện tích tam giác DEM đạt giá trị lớn nhất
giúp mk nha
khoảng 9 h có nha
gấp lắm
bài 1. hình vuông ABCD. M là trung điểm BC. Qua A vẽ đường vuông góc với DM giao CD tại N.
a) cm N là trung điểm CD
b) cm AM vuông góc BN
bài 2. hình vuông ABCD, E thuộc CD, F thuộc BC sao cho FA là tia phân giác góc BFE.
a) cm EA là phân giác góc DEF
b) cm EF = DE + BF
help me
Cho tam giác ABC vuông tại A, AB< AC. Đường cao AH. D đối xứng với A qua H. Đường thẳng kẻ qua D và song song với AB cắt BC và AC lần lượt tại M và N. Gọi I là trung điểm của MC. Cm IN=HN
P/S: có câu a là chứng minh ABDM là hình thoi, câu b là cm AM vuông góc vs CD nhưng các bạn chỉ cần cm hộ m câu c như trên thôi nha. Cảm ơn
Cho hình vuông ABCD. Trên các cạnh AB, BC, CD, DA lấy các điểm M, N, H, K sao cho AM= BN = CH = DK.
a) Chứng minh: tam giác AMK= tam giác BNM = tam giác CHN
b) Chứng minh: MN vuông góc MK
c) C/M : MNHK là hình vuông
d) C/M: MN, KN, AC, DB đồng quy
Cần gấp! Giusp mk nha!! Cám Mơn <3
Cho tam giác ABC vuông tại A (AB < AC). Gọi I là trung điểm cạnh BC. Qua I vẽ IM vuông góc với AB tại M và IN vuông góc với AC tại N.
a) Chứng minh rằng tứ giác AMIN là hình chữ nhật
b) Gọi D là điểm đối xứng với I qua N. Chứng minh rằng tứ giác AICD là hình thoi
c) Đường thẳng BN cắt CD tại K. Chứng minh rằng \(\frac{DK}{DC}=\frac{1}{3}\)