Cho hình vuông ABCD cạnh a. Gọi M là một điểm nằm giữa B và C. Tia AM cắt đường thẳng CD tại N. Chứng minh giá trị biểu thức P=\(\dfrac{1}{AM^2}+\dfrac{1}{AN^2}\) luôn không đổi khi M di chuyển trên B và C
Cho đường tròn (0,r) và điểm M nằm ngoài đường tròn . Vẽ 2 tiếp tuyến MA , MB của đường tròn ( AB là tiếp điểm )a, Chứng minh rằng 4 điểm O,A,M,B nằm trên 1 đường trònb, Biết OA = 6 cm , AM = 8cm . Tính số đo góc AMO và độ dài đoạn thẳng ABc, Gọi giao điểm của OM và (O;r) là K . Từ K kẻ KP⊥AM (P∈AM ) ; kẻ KQ ⊥BM ( Q∈BM ) . Chứng minh rằng PQ // AB
\(Bài 4: Cho đường tròn (O) và điểm A nằm ngoài đường tròn. Kẻ các tiếp tuyến AB, AC với đường tròn (B,C là các tiếp điểm). Gọi H là giao điểm của AO và BC, K là trung điểm của HB. Đường thẳng AK cắt đường tròn tại M và N( M nằm giữa A và N). Kẻ OI vuông góc với MN (I thuộc MN). Chứng minh a. Tứ giác OHKI nội tiếp b. AB² = AM. AN. Từ đó suy ra AB² + IM² =AI² c. CI = 3BI Read more: https://dethihocki.com/de-ki-2-lop-9-mon-toan-phong-gd-quang-ngai-2019-a14680.html#ixzz6FDyVDHYX\)
Từ điểm A nằm ngoài (O) kẻ 2 tiếp tuyến AM,AN (M,N là tiếp điểm). Qua O kẻ đường thẳng song song với MN cắt AM và AN lần lượt tại B và C. Trên cung nhỏ MN lấy điểm K từ điểm K kẻ 1 tiếp tuyến cới (O) cắt AM, AN lần lượt tại P và Q.
a) Tứ giác BMNC là hình gì?
b) CM: BP.CQ=BC^2/4
cho đường tròn (O) và điểm A nằm ngoài đường tròn. vẽ tiếp tuyến AM,AN với đường tròn O (M,N thuộc O). qua A vẽ một đường thẳng cắt đường tròn O tại hai điểm B,C phân biệt (B nằm giữa A và C). gọi H là trung điểm của đoạn BC
a.cm tứ giác AMHN nội tiếp đường tròn
b.cm AN\(^2\)=AB.AC
1, cho đường tròn (O; 5cm) 1 đường thẳng ik qua A nằm ngoài đường tròn cắt đường tròn tại B và C sao cho AB=BC kẻ đường kính CD độ dài đường thẳng AD là
a.10(cm)
b.12(cm)
c.16(cm)
d.15(cm)
cho tam giác ABCvuông tai A đường cao AH chia cạnh huyền BC thành 2 đoạn BH=3,6cn và
HC= 6,4cm trên cạnh AC lấy điểm M (M≠A,M≠C) kẻ AD vuông góc với MB tại D
1,TÍNH AB . AC .GÓC B .GÓC C(làm tròn đến phút)
2 cm BD*BM=BH*BC
3 CM 4 điểm A B C D cùng thuộc 1 đường tròn. CM AC là tiếp tuyến của đường tròn đó
cho đường tròn (O;R) , dây BC\(\ne\)đường kính . 2 tiếp tuyến của đg tròn tại B và C cắt nhau tại A. Kẻ đường kính CD . Kẻ BH vuông góc CD tại H
a, CM: A,B,O,C cùng thuộc 1 đường tròn . Xác định tâm,bán kính đường tròn đó
b, CM : AO vuông góc BC . Tính AB,OA biết R=1,5 và BC=24
c, CM: BC là phân giác góc ABH
d, I là giao điểm AD và BH , BD giao AC tại E . CM : IH=IB