Cho tam giác ABC vuông tại A, đường cao AH ( H thuộc BC)
a) Cm: tam giác HAC đồng dạng tam giác ABC
b) CHo AB = 6cm, AC= 8cm. Tính Ah, BC
c) Gọi E, F lần lượt là trung điểm của BH, AH. Gọi G là giao điểm của CF và AE. Tính tỉ số diện tích của tam giác AGF và tam giác CGE
Cho tam giác ABC có AB<AC, điểm D nằm giữa A và C sao cho góc ABD= góc ACB
a, CMR tam giác ABC đồng dạng với tam giác ADB, từ đo suy ra AB2=AC.AD.
b, Biết SABC=16cm2, AB=6cm, AC=8cm. Tính diện tích tam giác ADB.
c, Tia phân giác của góc A cắt BC tại E. Qua A kẻ đường thẳng vuông góc với AE cắt BC tại M. CMR MB.EC=MC.EB
Cho tam giác ABC gọi M là điểm cố định trên BC. Trên AB và AC lấy E và F. Tìm vị trí của E và F để chu vi tam giác MEF nhỏ nhất
ho tam giác abc vuông tại A có AB <AC .trên cạnh AC lấy D sao cho AD=AB. kẻ CE vuông góc với BD (E thuộc BD) a) chứng minh 2 góc EAC và EBC bằng nha b)kéo dài AB và CE cắt nhau tại F. CHứng minh diện tích tam giác FAE = diện tích tam giác ABCE
cho tam giác ABC vuông tại A có AB=3cm, BC=5cm, vẽ đường cao AH của tam giác ABC
a)CM tam giác ABC đồng dạng với tam giác HBA
b)CMR AB^2 = BH.BC. tính BH
c)Dựng đường phân giác BD của tam giác ABC cắt AH ở E. Tính EH/EA. tính EH .
d) tính diện tích tứ giác HEDC
1. Cho tam giác ABC vuông tại A, hai đường cao AI và BD cắt nhau tại H.
a) CMR: t/giác AIC đồng dạng t/giác BDC.
b) Gọi E là giao điểm của CH và AB. CMR: BE.BA + CH.CE = BC2
c) Gọi F là giao điểm của DE và AH. CMR: 1AF+1AI=2AH