Cho hình vuông ABCD cạnh a. Gọi M là một điểm nằm giữa B và C. Tia AM cắt đường thẳng CD tại N. Chứng minh giá trị biểu thức P=\(\dfrac{1}{AM^2}+\dfrac{1}{AN^2}\) luôn không đổi khi M di chuyển trên B và C
Cho hình vuông ABCD có cạnh bằng a tâm O, hai điểm di động M,N lần lượt trên hai cạnh BC, CD sao cho góc MAN= 45 độ. Gọi H, K lần lượt là hình chiếu của B, D trên AM, AN
a). Chứng minh tg ABHO, ADKO nội tiếp khi BM= DN= \(\dfrac{a}{3}\)
b) Chứng minh \(\dfrac{AH}{AN}=\dfrac{AK}{AM}\)
Cho hình vuông ABCD. Gọi I là 1 điểm nằm giữa A và D. Tia DI cắt tia CD ở K. Kẻ Dx vuông góc DI cắt tia BC ở E
a) Chứng minh tam giác DIE là một tam giác cân
b) Tổng \(\dfrac{1}{DI^2}\)+\(\dfrac{1}{DK^2}\)không đổi khi I di động trên cạnh AB
Cho hình thoi ABCD có góc ABC=60°.Trên cạnh DC lấy điểm M sao cho góc MAD=15°Tia AM cắt BC tại N
a) CMR:1/AM^2+1/AN^2=4/3AB^2
b) Trên cạnh AB lấy điểm Q Kẻ NQ cắt AC tại P CMR: BN/BQ-CN/CP ko đổi khi Q di chuyển trên AB
Cho hình vuông ABCD (AB=a) , M là một điểm bất kỳ trên cạnh BC . Tia Ax vuông góc với AM cắt đường thẳng CD tại K . Gọi I là trung điểm cảu đoạn thẳng MK. Tia AI cắt đường thẳng CD tại E . Đường thẳng qua M song song với AB cắt AI tại N
1, Tứ giác MNKE là hình gì? Chứng minh
2, Cmr :\(AK^2=KC.KE\)
3, Cmr : Khi điểm M di chuyển trên cạnh Bc thì tam giác CME luôn có chu vi không đổi
4, Tia AM cắt đường thẳng CD tại G. Cmr : \(\frac{1}{AM^2}+\frac{1}{AG^2}\) không phụ thuộc vào vị trí của điểm M
Cho (O) đk BC=2R. Trên tia đối BC lấy A/ AB<R.Từ A kẻ cát tuyến ADE với (O). Đường vuông góc AB tại A cắt CD tại M. MB cắt (O) , AD tại H và K.
a) C/m ABDM nội tiếp
b) C/m EH vuông góc AC
c) Cm khi cát tuyến ADE thay đổi thì trọng tâm tam giác ACE luôn nằm trên đg tròn cố định
cho hình vuông ABCD. Trên cạnh BC lấy điểm E, gọi F là giao điểmcủa AE và DC, I là giao điểm của DE và BF. Chứng minh: CI vuông góc AF
Cho hình vuông ABCD . Các điểm M,N thay đổi trên các cạnh BC , CD sao cho \(\widehat{MAN}\) = 45 độ . M , N không trùng với các đỉnh của hình vuông . Gọi P , Q lần lượt là giao điểm của AM , AN với BD . Chứng minh :
a ) Các tứ giác ABMQ , ADNP nội tiếp
b) Tứ giác MNQP nội tiếp
c) Tỉ số diện tích của 2 tam giác APQ và AMN không đổi
d) NA là phân giác của MND
e) MN tiếp xúc với 1 đường tròn cố định
Cho tam giác ABC đều, có AH là đường cao và M là điểm bất kì thuộc đoạn BC. Kẻ MP và MQ lần lượt vuông góc với AB và AC. Gọi O là trung điểm của AM. Gọi G là trọng tâm tam giác ABC, I là giao điểm của PQ và OH. Chứng minh rằng: 3 điểm M, I, G thẳng hàng